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Characters on a group

Let G be a topological group. Recall the notion of a character on G :

Definition

A continuous function χ on group G is called a (normalized) character if

χ is positive-definite, i.e. the matrix [χ(g−1
j gk)]

m
j,k=1 is positive semi-definite for

any g1, g2, . . . , gm ∈ G ,

χ is central, i.e. the equality χ(gh) = χ(hg) holds for all g , h ∈ G ,

χ(e) = 1, where e is the identity element of G .

Definition

A character χ is called indecomposable if it is an extreme point of the simplex of all
characters. In other words, χ is indecomposable if there are no distinct characters χ1,
χ2 and α ∈ (0, 1) such that χ = αχ1 + (1− α)χ2.
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General inductive limits

Let {G(n)}∞n=1 be a sequence of locally compact separable groups such that
G(n) ↪→ G(n + 1). Consider the inductive limit

lim−→G(n) = G .

The topology on G is given by the usual inductive limit topology.

Let us record the following simple observation:

Lemma

Any compact subset of G is contained in G(m) for all sufficiently large m.
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Unitary representations and matrix elements

From now on we will consider only continuous unitary group representations, i.e.
continuous group homomorphisms Π: H → U(H), where H is a topological group and
U(H) is the unitary group of a Hilbert space H. We also denote H(Π) = H.

Let T be a unitary representation of G and let {Tn}∞n=1 be a sequence of
representations of the groups {G(n)}∞n=1.

Convention

Given any Ξ = {ξ1, . . . , ξs} ⊂ H(T ) and Ξn = {ξ1n, . . . , ξsn} ⊂ H(Tn), n = 1, 2, . . .,
we will write

(Tn,Ξn) → (T ,Ξ) as n → ∞,

if for any i , j ∈ {1, . . . , s} we have the convergence of matrix elements

⟨Tn(g)ξin, ξjn⟩ → ⟨T (g)ξi , ξj⟩, n → ∞,

which is uniform on compact subsets of G .

Remark

Clearly, for a fixed g ∈ G the expression ⟨Tn(g)ξin, ξjn⟩ makes sense for all sufficiently
large n.
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Convention

Let T be a unitary representation of the group G . A sequence {Tn}∞n=1 of unitary
representations of the groups {G(n)}∞n=1 approximates T if for any finite subset
Ξ ⊂ H(T ) there exist finite subsets Ξn ⊂ H(Tn) of the same cardinality such that

(Tn,Ξn) → (T ,Ξ) as n → ∞ (1)

in the sense define above. In this case we will write Tn → T as n → ∞.

Examples

For a unitary representation T of the group G define Tn = T |G(n). Then, Tn → T
as n → ∞;

Let {Tn}∞n=1 be a sequence of representations of the groups {G(n)}∞n=1 such that
Tn|G(m) = Tm for all n and m with n > m. Then, for the inductive limit T we
have Tn → T as n → ∞.
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On positive-definite functions

Let φ, φ1, φ2, . . . be normalized, continuous, positive-definite functions on groups G ,
G(1),G(2), . . ., respectively. Denote by T , T1,T2, . . . the corresponding cyclic unitary
representations obtained via the Gelfand–Naimark–Segal (GNS) construction.

Lemma

If φn → φ when n → ∞ uniformly on compact subsets of G , then Tn → T as n → ∞.

A representation-theoretic counterpart of the approximation theorem is the following
statement:

Theorem (G. Olshanski, [1, 22.9])

For any irreducible unitary representation T of the group G there is a sequence
{Tn}∞n=1 of irreducible unitary representations of the groups G(n) which approximates
T in the sense of (1).
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Main theorem

The goal of this talk is to explain the proof of the following theorem.

Theorem (the approximation theorem, G. Olshanski, [1, 22.10])

For any continuous, normalized, indecomposable, positive-definite function φ on G ,
there exists a sequence {φn}∞n=1, where φn is a continuous normalized indecomposable
positive-definite function on G(n) such that φn → φ as n → ∞ uniformly on compact
subsets of G .

Remark

In the case when G is a discrete group, the last property is equivalent to the pointwise
convergence on G .

This theorem is often useful in problems of the classification of all indecomposable
characters (equivalently, II1-factor representations) of “big groups”. It essentially
reduces the problem to finding all (continuous) limits of irreducible characters of the
groups G(n).

Remark

Note that in the theorem above we do not require φn or φ to be central.
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Example 1: Thoma theorem

The natural inclusions {1, . . . ,N} ↪→ {1, . . . ,N,N + 1} induce the following chain of
embeddings of symmetric groups:

S(1) → S(2) → . . . → S(N) → S(N + 1) → . . .

The corresponding inductive limit S(∞) = lim−→S(n) is called the infinite symmetric
group. The classical theorem of E. Thoma concerns the classification of all
indecomposable characters of the infinite symmetric group.

Theorem (Thoma, 1964; Vershik–Kerov, 1981)

The indecomposable characters of the group S(∞) are the functions of the form

χα,β(σ) =
∏
k∈[σ]

(
∞∑
i=1

αk
i + (−1)k−1

∞∑
i=1

βk
i

)
, σ ∈ S(∞),

where α = {αi}∞i=1 and β = {βi}∞i=1 are two sequences of non-negative real numbers
(called Thoma parameters) such that

α1 ⩾ α2 ⩾ . . . ⩾ 0, β1 ⩾ β2 ⩾ . . . ⩾ 0, and
∞∑
i=1

(αi + βi ) ⩽ 1.

Here [σ] stands for the multiset of cycle lengths of a permutation σ.
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Example 1: interpretation of the parameters

Recall that irreducible representations of the symmetric group S(N) are parameterized
by the Young diagrams λ with |λ| = N boxes. Equivalently, they are in a one-to-one
correspondence with the partitions of N, i.e. sequences λ = (λ1, . . . , λℓ) of positive
integers with λ1 ⩾ . . . ⩾ λℓ and λ1 + . . .+ λℓ = N. Denote by χλ the corresponding
normalized character on S(N).

Vershik and Kerov showed that any indecomposable character of S(∞) is a weak limit
of a certain sequence {χλ(n)}∞n=1 of irreducible characters of the groups S(n).
Moreover, a sequence {χλ(n)}∞n=1 converges pointwise iff the following limits exist:

αi := lim
n→∞

|i-th row of λ(n)|
n

and βi := lim
n→∞

|i-th column of λ(n)|
n

.

Besides that, the corresponding limiting character is precisely the indecomposable
character with the Thoma parameters {αi}∞i=1 and {βi}∞i=1.

The Thoma parameters correspond to the asymptotics of the lengths of rows and
columns of λ(n) (or rather as the growth rates of the Frobenius coordinates of λ(n)).
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Young diagrams

Young diagrams for λ = (5, 5, 3, 1, 1) (left) and λ′ = (5, 3, 3, 2, 2) (right). In the
Frobenius coordinates we have λ = (4, 3 | 4, 1) and λ′ = (4, 1 | 4, 3).
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Example 2: the infinite unitary group

Similar to the first case one defines the infinite unitary group U(∞) = lim−→U(n) using

the embedding U 7→
[
U

1

]
for U ∈ U(n).

Theorem (Voiculescu, 1976; Vershik–Kerov, 1982)

The indecomposable characters of the group U(∞) are the functions of the form

χα±,β±,γ±(U) = det

(
∞∏
k=1

(I + β+
k (U − I ))(I + β−

k (U∗ − I ))

(I − α+
k (U − I ))(I − α−

k (U
∗ − I ))

)
×

× exp
{
γ+ Tr(U − I ) + γ− Tr(U∗ − I )

}
, U ∈ U(∞),

where α± = {α±
i }

∞
i=1 and β± = {β±

i }∞i=1 are four sequences of non-negative real
numbers, and γ+, γ− are non-negative real numbers such that

α±
1 ⩾ α±

2 ⩾ . . . ⩾ 0, β±
1 ⩾ β±

2 ⩾ . . . ⩾ 0,
∞∑
i=1

(α+
i +α−

i +β+
i +β−

i ) < ∞, β+
1 +β−

1 ⩽ 1.
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Example 2: interpretation of the parameters

Recall that the irreducible representations of the group U(N) are parameterized by
highest weights, i.e. by non-increasing sequences λ = (λ1, . . . , λN) of integers.
Alternatively, highest weight can be represented by two partitions λ+ and λ− which
consist of positive entries of (λ1, . . . , λN) and (−λN , . . . ,−λ1), respectively. Note that
ℓ(λ+) + ℓ(λ−) ⩽ N. We abuse the notation and denote by χλ the normalized
character of the corresponding irreducible representation of U(N).

Example

For N = 6 and highest weight λ = (3, 2, 0,−1,−1,−2) we have λ+ = (3, 2) and
λ− = (2, 1, 1). In particular, |λ+| = 5, |λ−| = 4, ℓ(λ+) = 2 and = ℓ(λ−) = 3.

It turns out that the approximation theorem holds in the second example as well.
Moreover, the parameters α±, β± and γ± have a similar meaning. Namely, a sequence
{χλ(n)}∞n=1 of irreducible characters of the groups U(n) converges iff the limits

α±
i := lim

n→∞

|i-th row of λ±(n)|
n

, β±
i := lim

n→∞

|i-th column of λ±(n)|
n

, θ± := lim
n→∞

|λ±|
n

exist. These correspond to the parameters α±, β±, γ± in the theorem above, where

γ± = θ± −
∞∑
i=1

(α±
i + β±

i ).
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About extreme points in locally convex vector spaces

Let L be a real (Hausdorff) locally convex topological vector space. Denote by L∗ the
space of all continuous linear functionals on L. For a convex subset A of L we denote
by ex(A) the set of all extreme points of A.

The crucial ingredient of the proof of the main theorem is the following general fact.

Proposition ([1, 22.13])

Let A1,A2, . . . be a decreasing sequence of convex compact subsets of L that satisfy
the first axiom of countability (e.g. metrizable compact subsets). Denote A =

⋂∞
i=1 Ai .

Then, for any x ∈ ex(A) there exists a sequence of points xn ∈ ex(An) such that
xn → x as n → ∞.

One important fact about the extreme points of a convex compact subset is the
celebrated Krein–Milman theorem.

Theorem (Krein–Milman)

Let A be a convex compact subset in L. Then, A coincides with the closure of the
convex hull of its extreme points. In other words, A = conv(ex(A)).
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Auxiliary lemmas

To prove the proposition we need a few auxiliary statements.

Lemma

For any real vector spaces L1 and L2 and any convex subsets B1 ⊂ L1 and B2 ⊂ L2 we
have

ex(B1 × B2) = ex(B1)× ex(B2).

For any ξ ∈ L∗ and α ∈ R we put

U(ξ, α) = {y ∈ L : ξ(y) > α}, V (ξ, α) = {y ∈ L : ξ(y) ⩾ α}.

Lemma

Let A be a convex compact subset of L. Let x ∈ ex(A) and V be a neighborhood of x
in L. Then, there exist ξ ∈ L∗ and α ∈ R such that

x ∈ U(ξ, α) and A ∩ V (ξ, α) ⊂ V .
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Proof

The proof follows Dixmier, see [2, Appendix B, B 14]). Note that we may assume that
V is open.
(1) By the Hahn–Banach theorem, we have

A ∩
⋂

α∈R, ξ∈L∗

ξ(x)>α

V (ξ, α) = {x}, hence, (A \ V ) ∩
⋂

α∈R, ξ∈L∗

ξ(x)>α

V (ξ, α) = ∅.

Note that each V (ξ, α) is a closed subset of L.
(2) Since A \ V is compact, we may choose a finite collection of ξ1, . . . , ξk ∈ L∗ and
α1, . . . , αk ∈ R such that ξi (x) > αi , that is, x ∈ U(ξi , αi ) for each i and

(A \ V ) ∩
k⋂

i=1

V (ξi , αi ) = ∅.

(3) If k = 1, then we can take (ξ, α) = (ξ1, α1). If k > 1, we can decrease k by using
the lemma below.
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Claim

In the notation of the previous lemma assume that ξ1, ξ2 ∈ L∗ and α1, α2 ∈ R are such
that ξ1(x) > α1 and ξ2(x) > α2. Then, there exist ξ3 ∈ L∗ and α3 ∈ R such that

ξ3(α3) > x and A ∩ V (ξ3, α3) ⊂ A ∩ V (ξ1, α1) ∩ V (ξ2, α2).

Proof

Denote Ai = {y ∈ A : ξi (y) ⩽ αi} for i = 1, 2. Clearly, A1 and A2 are compact convex
subsets of A that do not contain x . Moreover, since x is an extreme point of A, the
convex hull of A1 and A2 does not contain x either. Indeed, we have

conv(A1 ∪ A2) = {λa1 + (1− λ)a2 : λ ∈ [0, 1]},

and this is a compact convex subset of L that does not contain x . Then, according to
the Hahn–Banach theorem, there exist ξ3 ∈ L∗ and α3 ∈ R such that ξ3(x) > α3, but
ξ3(z) < α3 for all z ∈ conv(A1 ∪ A2). It is not difficult to see that these ξ3 and α3

satisfy the requirements. □
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Main proposition

Recall that L is a locally convex (Hausdorff) topological vector space.

Proposition

Let A1,A2, . . . be a decreasing sequence of compact convex subsets of L that satisfy
the first axiom of countability (e.g. metrizable compact subsets). Denote A =

⋂∞
i=1 Ai .

Then, for any x ∈ ex(A) there exists a sequence of points xn ∈ ex(An) such that
xn → x as n → ∞.

Proof

Clearly, it suffices to check that for any neighborhood V of x there is a sequence
{yn}∞n=1, where yn ∈ ex(An) ∩ V for all sufficiently large n. By the above lemma, there
exist ξ ∈ L∗ and α ∈ R such that x ∈ A ∩ V (ξ, α) ⊂ V .

For any n the set {z ∈ An : ξ(z) ⩾ α} is non-empty (it contains x) and thus contains a
point yn ∈ ex(An). Indeed, by the Krein–Milman theorem, any compact convex subset
K of L is the closure of the convex hull of ex(K). Applying this fact to
{z ∈ An : ξ(z) ⩾ α} and {z ∈ An : ξ(z) = α} gives the required point yn ∈ ex(An).

Finally, all limit points of {yn}∞n=1 belong to A ∩ V and the lemma follows. □
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Towards the proof of the main theorem

To illustrate the main ideas of the proof, we first consider the case where all the
groups G(n) and G are discrete.

Let Ln be the space L∞(G(n)) with respect to the Haar measure endowed with the
weak-∗ topology as the space dual to L1(G(n)).

Introduce the following sets:

let Qn be the convex set of all continuous positive-definite functions on G(n)
whose values at the identity do not exceed 1;

let Pn ⊂ Qn be the set of normalized indecomposable positive-definite functions
on G(n) whose values at the identity are equal to 1;

define P and Q to be the analogous sets for the group G .

As the groups G(n) are separable, the sets Qn are metrizable convex compact subsets
of Ln (by the Banach–Alaoglu theorem, the unit ball in Ln = L∞(G(n)) is compact in
the weak-∗ topology). Note that ex(Qn) = Pn ∪ {0} and ex(Q) = P ∪ {0}.
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Proof in the discrete case 1/2

Let Resn be the restriction map from functions on G(n + 1) to functions on G(n).
Observe that since groups G(n) are discrete, the map Resn : Qn+1 → Qn is continuous.

Now consider the infinite product L = L1 × L2 × . . .× Ln × . . . with the product
topology. The space L is locally convex and

Q̃ = Q1 × Q2 × . . .× Qn × . . .

is a convex compact metrizable subset of L. We also define

An = {f = (f1, f2, . . .) ∈ L : fi = Resi+1(fi+1), i = 1, . . . , n − 1}.

It is clear that An is a compact convex subset of L that is isomorphic to the product
Qn × Qn+1 × . . . ⊂ Ln × Ln+1 × . . .. Note also that if f = (f1, f2, . . .) ∈ ex(An), then
fn ∈ ex(Qn) = Pn ∪ {0}. Indeed, this follows from one of the above lemmas if we take
B1 = Qn and B2 = Qn+1 × Qn+2 × . . ..
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Proof in the discrete case 2/2

Now we may identify Q with A = A1 ∩ A2 ∩ . . .. Then, ex(A) is identified with
ex(Q) = P ∪ {0}.

Assume that φ ∈ P. Then, by the proposition above, there exists a sequence
xn ∈ ex(An) such that xn → x as n → ∞ in the topology of L.

Denote by φn the n-th component of xn ∈ An, then φn ∈ ex(Qn) = Pn ∪ {0} (recall
that ex(An) is identified with ex(An)). The definition of the topology of L =

∏
m Lm

implies that for any fixed m we have

φn|G(m) → φ|G(m) as n → ∞ in Lm.

As the groups G(m) are assumed to be discrete, we conclude that φn converges to φ
pointwise on G(m) for each m.

If φn ≡ 0 for infinitely many n, then clearly φ ≡ 0, which is impossible. Therefore, we
may assume that φn ∈ Pn for all sufficiently large n. Finally, observe that for discrete
groups, the uniform convergence on compact subsets is the same as the pointwise
convergence. This concludes the proof of the approximation theorem in the discrete
case. □
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General case

Now assume that the groups G(n) are arbitrary locally compact separable groups. The
main difference is that now the maps Resn : Ln+1 → Ln are no longer continuous and
thus, one has to modify the construction of convex compact subsets An.

Convention

For two functions f and g on a certain group we write f ≫ g if f − g is a
positive-definite function.

Let Qn and L be as above. For each positive integer n define

Bn = {f = (f1, . . . , fn) ∈ Q1 × . . .× Qn : fi ≫ Resi fi+1 for i = 1, . . . , n − 1},

An = Bn × Qn+1 × Qn+2 × . . . ⊂ Q1 × Q2 × . . . ⊂ L. (2)

Clearly, An is a convex subset of L.

Lemma

An is a metrizable compact subset in the topology of L.
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Reminder about group algebras

Let G0 be a locally compact separable group. Once can regard the elements of the
space L1(G0) as complex-valued absolutely continuous measures with respect to a left
Haar measure ν on G0. Namely, a function f ∈ L1(G0) corresponds to the measure µ
given by

µ(E) =

∫
E

f (g)dν(g),

where E ⊂ G0 is a measurable subset of G0.

Recall that the Banach algebra L1(G0) has a canonical involution which o the level of
functions sends f ∈ L1(G0) to

f̌ (g) = f (g−1)∆(g−1), g ∈ G0,

where ∆ is the modular function of G0. The latter is defined by means of the identity

vol(Eg−1) = ∆(g) · vol(E).

Therefore, on the level of measures we have

µ̌(E) =

∫
E

f (g−1)∆(g−1)dν(g) =

∫
E−1

f (g) dν(g) = µ(E−1).
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Convolutions of functions and measures

For two functions f1, f2 ∈ L1(G0) we define their convolution as

(f1 ∗ f2)(g) =
∫
G0

f1(h)f2(h
−1g)dν(h).

In terms of the associated complex-valued measures µ1 and µ2 we have

(µ1 ∗ µ2)(E) =

∫
G0

∫
G0

1E (gh) dµ1(g)dµ2(h),

and more generally∫
G0

f (k) d(µ1 ∗ µ2)(k) =

∫
G0

∫
G0

f (gh)dµ1(g)dµ2(h).

The latter is equivalent to the identity∫
G0

f (k)(f1 ∗ f2)(k) dν(k) =
∫
G0

∫
G0

f (gh)f1(g)f2(h) dν(g)dν(h).



Preliminaries Main theorem Discrete case General case

Positive-definite functions and convolutions

Let f be a bounded continuous function on G0. It is known that f is positive-definite if
and only if for any function p ∈ L1(G(i)) the following inequality holds:∫

G0

∫
G0

f (g−1h)p(g)p(h) dν(g)dν(h) ⩾ 0.

If µ is the complex-valued measure on G0 that corresponds to p ∈ L1(G(i)), then the
previous inequality can be rewritten as∫

G0

∫
G0

f (gh)p(g)−1∆(g−1)p(h) dν(g)dν(h) ⩾ 0 ⇔
∫
G0

∫
G0

f (gh)dµ̌(g)dµ(h) ⩾ 0,

that is, ⟨f , µ̌ ∗ µ⟩ =
∫
G0

f (k)d(µ̌ ∗ µ)(k) ⩾ 0.

In other words, f is positive-definite iff ⟨f , µ̌ ∗ µ⟩ ⩾ 0 for all µ from L1(G0).
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In particular, if f is a function of the form q̌ ∗ F ∗ q for some positive-definite function
F and q ∈ L1(G0), then f is positive-definite. Indeed, in this case

⟨f , µ̌ ∗ µ⟩ =
∫
G4
0

q̌(g1)F (g
−1
1 ghh1)q(h

−1
1 )dµ̌(g)dµ(h)dν(g1)dν(h1),

which equals ⟨F , (µ̌ ∗ q̌) ∗ (q ∗ µ)⟩ = ⟨F , ř ∗ r⟩ ⩾ 0 for r = q ∗ µ.

Therefore,
(q̌ ∗ F ∗ q)(e) = sup

κ
⟨q̌ ∗ F ∗ q, κ⟩,

where the supremum runs over all probability measures κ from L1(g0).
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Proof of the lemma

It suffices to check that An is closed in L. This can be reduced to verifying that for all
i the following set is closed:

{(fi , fi+1) ∈ Qi × Qi+1 : fi ≫ Resi fi+1} ⊂ Li × Li+1.

Note that we can regard complex-valued measures on G(i) as complex-valued
measures on G(i + 1) as well.

fi ≫ Resi fi+1 ⇔ ⟨fi , µ̌ ∗ µ⟩ ⩾ ⟨Resi fi+1, µ̌ ∗ µ⟩ for all µ ∈ L1(G(i)) ⇔

⇔ ⟨fi , µ̌ ∗ µ⟩ ⩾ ⟨fi+1, µ̌ ∗ µ⟩ for all µ ∈ L1(G(i)) ⇔

⇔ ⟨fi , µ̌ ∗ µ⟩ ⩾ (µ̌ ∗ fi+1 ∗ µ)(e) for all µ ∈ L1(G(i)).

Observe that the function µ̌ ∗ fi+1 ∗ µ is a positive-definite function on G(i + 1) and
therefore,

(µ̌ ∗ fi+1 ∗ µ)(e) = sup
κ

⟨µ̌ ∗ fi+1 ∗ µ, κ⟩ = sup
κ

⟨fi+1, µ̌ ∗ κ ∗ µ⟩,

where κ in the supremum runs over all probability measures from L1(G(i + 1)). Thus,
fi ≫ Resi fi+1 holds if and only if ⟨fi , µ̌ ∗ µ⟩ ⩾ ⟨fi+1, µ̌ ∗ κ ∗ µ⟩ for all µ and κ. Since
these conditions are closed in the topology of Li × Li+1, the lemma follows. □
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Towards the proof

For positive integers m and n with m ⩽ n define the following subset of Bn

Qn,m =

{
f = (f1, . . . , fn) ∈ Q1 × . . .× Qn

∣∣∣∣∣ fi = Resm−i fm for i = 1, . . . ,m

fi = 0 for i = m + 1, . . . , n

}
⊂ Bn.

For instance, Q4,2 = {(Res1 f , f , 0, 0) : f ∈ Q2}. Clearly, the mapping f 7→ fm gives an
isomorphism between Q and Qm.

For any g ∈ Qm we denote by g (n) the corresponding element from Qn,m.

Lemma

The set Bn is the convex hull of its subsets Qn,1,Qn,2, . . . ,Qn,n.

Proof

It is evident that conv(Qn,1 ∪ Qn,2 ∪ . . . ∪ Qn,m) ⊂ Bn. Take any f = (f1, . . . , fn) ∈ Bn.
For each i = 1, . . . , n − 1 define an element gi of Li by the formula gi = fi − Resi fi+1.
By the definition of Bn, we have gi ≫ 0 and gi (e) = fi (e)− fi+1(e) ⩽ 1. Therefore,
gi ∈ Qi for every i = 1, . . . , n − 1.
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Proof

Put gn := fn ∈ Qn ⊂ Ln. We have the following equalities

f1 = Resn−1(gn) + Resn−2(gn−1) + . . .+ Res(g2) + g1,

f2 = Resn−2(gn) + Resn−3(gn−1) + . . .+ g2,

. . . . . . . . .

fn = gn

In other words, f = g
(n)
n + g

(n)
n−1 + . . .+ g

(n)
1 . As f1(e) = gn(e) + gn−1(e) + . . .+ g1(e),

the function f is a convex combination of (angn)
(n), (an−1gn−1)

(n−1), . . . , (a1g1)
(n):

f =
gn(e)

f1(e)
· (angn)(n) +

gn−1(e)

f1(e)
· (an−1gn−1)

(n) + . . .+
g1(e)

f1(e)
· (a1g1)(n), where

an =
f1(e)

gn(e)
, an−1 =

f1(e)

gn−1(e)
, . . . , a1 =

f1(e)

g1(e)
.

If gi (e) = 0 for some i , then gi ≡ 0 and we omit the corresponding term. It remains to
notice that angn(e) = an−1gn−1(e) = . . . = a1g1(e) = f1(e) ⩽ 1, so aigi ∈ Qi for all i .
Thus, (aigi )

(n) ∈ Qi and f ∈ conv(Qn,1 ∪ . . .Qn,n), as claimed. □
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Lemma

ex(Bn) = ex(Qn,1) ∪ ex(Qn,2) ∪ . . . ∪ ex(Qn,n).

Proof

The previous lemma implies that ex(Bn) ⊂
⋃n

i=1 ex(Qn,i ). The reverse inclusion follows
from the fact that the zero function on G(i) belongs to ex(Qi ). □

Now consider the sets A1,A2, . . . defined in (2) and put A =
⋂∞

n=1 An. Then,

A = {f = (f1, f2, . . . , ) ∈ Q1 × Q2 × . . . : fi ≫ Resi fi+1 for i = 1, 2, . . .}.

In particular, we can regard Q as a subset of A.

Lemma

ex(Q) ⊂ ex(A).

Proof

For any element f = (f1, f2, . . .) in A we have f1(e) ⩾ f2(e) ⩾ . . .. It remains to note
that the elements of Q can be distinguished by the condition f1(e) = f2(e) = . . .,
which implies the statement of the lemma. □
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Proof of the general case 1/2

Let us show that for any φ ∈ P there exists an increasing sequence of positive integers
{nj}∞j=1 and elements φnj ∈ ex(Pnj ) such that φnj → φ as j → ∞ uniformly on all
compact subsets of G .

Identify φ ∈ P with a point x ∈ A. Then, x ∈ ex(A) since ex(Q) = P ∪ {0}. Recall
that A =

⋂∞
n=1 An and hence by the proposition above, there exists a sequence {xn}∞n=1

which converges to x in L and such that xn ∈ ex(An) for all n.

Write xn = (fn,1, fn,2, . . .), where fn,i ∈ Qi . Then, it is not difficult to see that for any
fixed m we have

fn,m → φ|G(m) as n → ∞ (3)

in the topology of L(m). Since φ ̸≡ 0, we have fn,m ̸≡ 0 for n which are sufficiently
large with respect to m.

On the other hand, the condition xn ∈ ex(An) implies that (fn,1, . . . , fn,n) ∈ ex(Bn).
Then, one of the lemmas above implies that

(fn,1, . . . , fn,n) ∈ ex(Qn,k) \ {0}

for some k = k(n) ∈ {1, . . . , n}.
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Proof of the general case 2/2

In particular, we obtain that

fn,k(n) ∈ Pk(n) and fn,i ≡ 0 for i > k(n).

It follows from (3) and the fact that φ ̸≡ 0 that k(n) → ∞ as n → ∞. Moreover, for
any fixed m we have the convergence

fn,k(n)|G(m) → φ|G(m)

in the topology of L(m) as n → ∞. Finally, recall that for normalized positive-definite
functions on G(m), the convergence in the topology of the space L(m) coincides with
the uniform convergence on compact subsets, see e.g. Dixmier [2, 13.5.2].

Finally, choosing a subsequence {nj}∞j=1 such that {k(nj)}∞j=1 is increasing and setting
φnj := fnj ,k(nj ) gives the required statement. □
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