BIG ALGEBRA IN TYPE A FOR THE COORDINATE RING OF THE MATRIX SPACE

NHOK TKHAI SHON NGO

ABSTRACT. In this note we obtain the explicit formulas for the big algebra generators acting on a polynomial
ring. Our approach is based on direct computations in Weyl algebra using Kirillov D-operator, Capelli-type
identities. We verify that big algebra in type A is in fact the image of a suitable Bethe algebra.

1. INTRODUCTION

In this note we obtain explicit formulas for generators of big algebras in type A embedded into algebra
of polynomial differential operators on gl,,. Using these formulas, the formalism of R-matrices and ternary
relations we give an alternative proof of the commutativity of the big algebra. This approach has an advantage
of considering big algebras of all polynomial representations of gl,, simultaneously. Besides that, our proof of
commutativity relies only on direct calculations and thus, avoids the use of non-trivial constructions such as
Feigin-Frenkel center and opers.

1.1. Contents. Now let us briefly outline the contents of this note.

In Section 2 we fix the notation and recall the necessary facts about the representation gl,, on the matrix
space Mat(n, ).

In Section 3 we remind the notions of the classical Kirillov algebra and big algebra. Then, we state the main
result of this note — the explicit formulas for the generators of big algebra of the coordinate ring of Mat(n, r)

(Theorem [3.8/ and Corollary [3.9).

Section 4 is rather technical and is devoted to proofs of Theorem [3.8 and Corollary [3.9]

Sections 5 — 7 contain the proof of the commutativity of big algebras. In Section 5 we revise the Capelli’s
identity and its variants and in Section 6 we we recall the construction of a certain commutative subalgebra of
U(gl,), called Bethe algebra following Molev [8, Section 1.14]. Finally, in Section 7 we prove the commutativity
of big algebra (in type A) using the explicit formulas obtained in Section 3 (Corollary and the results from
Sections 5 and 6.

2. NOTATION AND PRELIMINARIES

Most of the proofs in this note involve many direct calculations. To simplify the formulas we introduce the
following notations.

2.1. Operations with tuples. For every positive integer m we denote [m] := {1,...,m} and let &,, be the
symmetric group of [m]. For any integer k such that 0 < k < m we define ([Z’]) to be the set of all k-element
subsets of [m] and [m]% to be the set of all k-tuples which consist of k distinct elements of m. Clearly,

(") = (1) ot =

where mE is the so-called falling factorial:
mE=m(m—-1)...(m—k+1) =k (ZL)
We also denote by [m]® = [m]*] the set of all k-tuples with entries in [m]. It is occasionally convenient to view
a k-tuple I = (i1,...,1x) as a function on the set [k] = {1,...,k}, namely, we set I(l) =4; for [ € [E].
2.1.1. Action of the symmetric group. For any k-tuple I = (iy,...,i;) and any permutation m € &, define
(2.1) T = (ig-1(1ys -+ s ln—1(k))-
1

Regarding I as a funciton on [k] we can alternatively write 71 = I o w1,

Remark 2.1. Using this group action we can identify ([’Z]) with quotient & \[m]X. In particular, we will often
regard a k-element subset as a k-tuple with arbitrarily chosen ordering (and in these situations the choice of
ordering will be irrelevant).
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2.1.2. Sign functions for tuples. For any I,.J € [n]k define the generalized sign function as follows:
(I) segn(r), if assets I = J,
sgn = )
J 0, otherwise,

where in the first case 7 is the unique permutation in &y, that maps k-tuple J to I. In other words, 7 satisfies
I=7-J.

Remark 2.2. Clearly, this agrees with the usual sign of permutation in the case when both I and J are
permutations of (1,2,...,n). In particular, if I = (1,...,n) and J = (7(1),...,7(n)) for 7 € &,,, then

o (5) =5 (ol oy o) =)

Now assume that we have tuples Iy,...,I; and Jy,...,J; such that I;, J; € [n]EL for each | = 1,...,k and

some positive integers p1,...,pi. Denote also p = p; + ...+ px. Then, we define

som L ... I . I

s\ o) T )
where I and J are p-tuples obtained by concatenating Iy,...,I; and Jy,...,Jy, respectively. For example, if
k = 2, then

I(s)—{h(s)’ se{l,...,pi}, and Jl(s):{‘]l(s)’ se{l,...,p1},

N\ L(s—p1), s€{p+1,....p1+p}, Jo(s —p1), se{pi+1,...,p1+p2}.

In our calculations we also need another variant of the signature function. For any tuples I, J; € [m]2 and
I, Jy € [m]2 define

sen(mime), ifassets h\Io=J1\J2 € (IETL%

eI, Ji, Iz, J2) :{

, otherwise.
Here in the first case 7, and 7> are elements of &,, that satisfy equalities:

Tl = J1, nelaliq = Jo, and Tl (pir,. gy = Tolopt1,....q)-

Note that a pair (71,72) is not defined uniquely in general. However, for any other such pair (7, 75) there
exists an element o € &, which fixes each element of [¢] and such that (7{,75) = (071,07m). In particular,
sgn(m72) = sgn(r{74) and, consequently, (11, J1, I2, Jo) is well defined.

Observe that both generalized sign functions are skew-symmetric in the sense of the following lemma.

Lemma 2.1. For any tuples I, J € [m]2 and any permutation o,7 € &, and one has

sen (ZD = sgn(o7) sgn G)

Similarly, for ay I, J1 € [m] and I, Jo € [m|2 and any permutations o1, 71 € &, and 02,7 € &, one has
6(0'1[17T1J1,(7212,7'2J2) = sgn(olﬁ) Sgn(O'QTQ) . 6([1, Jl, IQ, JQ)

2.2. Non-commutative matrices. We often work with matrices whose elements are elements of non-commutative
algebras. In particular, many computations involve non-commutative versions of determinants.
Let A = [aij]f\fj:l be an N x N matrix with entries in a certain non-commutative algebra. We define for
matrix A its
e row determinant:
rdet(A) = Z Sgn(g)al,a(l)aQ,U(Q)~~~aN,<7(N)7
oceGN
e column determinant:
cdet(A) = Z Sgn(g)%(1),1%(2),2 <+ Qg(N),N»
oceGN

e symmetrized determinant:

symdet(A) = Z SEN(0T)Ag(1),r(1) 00 (2),7(2) - - - Bo(N),7(N)-
o, TEGSN
Observe that if the entries of A do commute, then row and column determinants coincide with the usual one
while for the symmetrized version one has symdet(A4) = N!-det(A). Finally, note that row (column) determinant
is skew-symmetric with respect to columns (rows) while the symmetrized determinant is skew-symmetric with
respect to both rows and columns.
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For any N x N matrix M and any tuples I = (i1,...,ix) € [N]¥ and J = (j....,5) € [N]' we denote by

M 5 the following k x | matrix:
Miljl s Miljz
Myy = [Migjolaciypem = | 1 :
M; M;

kJ1 kJ

In the case, when the entries of I and J are strictly increasing, M;; is a submatrix of M.

2.3. Lie algebra gl,,. Let g = gl,, be the general Lie algebra of complex n xn matrices. We denote by {E;; }ﬁjzl
the standard basis of gl,, consisting of matrix units which satsify the following commutation relations:

(2.2) [Eij, Exi) = 6ju By — 01, Ey;.

Denote also by {yij}zjzl the corresponding coordinates on gl,,. In other words, y;; € gl;, and for any Y € gl,
we have

n
Y= yy(Y) Ey.
i,j=1
In particular, we can view the algebra C[gl,,] = S(gl,) as the polynomial ring Cly;;,1 < 4,5 < n].
Let h = span{E;; }1<i<n be the Cartan subalgebra consisting of diagonal matrices. Let ny = span{E;; hi<i<j<<n
and n_ = span{E;; }1<j<i<<n be the nilpotent subalgebras consisting of upper-triangular and lower-triangular
matrices, respectively. Thus, we obtain a triangular decomposition g=n_ @ Hdn,.

2.4. Coordinate ring of n x r matrices. Consider the coordinate ring P(n,r) = C[Mat(n,r)] of the space
Mat(n,r) of complex n x r matrices. Denote by {z;; : 1 < i < n,1 < j < r} the standard coordinates on
Mat(n,r). Then, P(n,r) is the polynomial ring Clz;;,1 < i < n,1 < j <r| in rn variables. We denote by 0;;
the partial derivative with respect to variable z;;.

2.4.1. Action of gl,,. Note that the matrix space Mat(n, r) possesses the following GL,-action on Mat(n, r):
(9,A) — (¢HT - A, g € GL,, A € Mat(n,7).

This action induces a GL,-action on the coordinate ring P(n,r) = C[Mat(n,r)]. Namely, for any P € P(n,r)
we have

(g- P)(A)=P(g" - A), g € GL,, A € Mat(n, 7).

Denote by z(g) the corresponding linear operator in End P(n, r).
Differentiating this action along one-parameter subgroups in GL, yields the infinitesimal gl,,-action on
P(n,r), which we denote by L. Direct calculation shows that

L(By) = Y wiadjas 14,5 <.

a=1

2.4.2. Algebra PD(n,r) of differential operators on P(n,r). Since L is a representation of gl,, it also gives rise
to a representation of the universal enveloping algebra U(gl,,) on P(n,r). In particular, the formula for L(E;;)
above implies that elements of U(gl,) act on P(n,r) as differential operators with polynomial coefficients.

Let PD(n,r) be the (non-commutative) algebra of differential operators on P(n,r) with polynomial coeffi-
cients. In other words, PD(n,r) is the Weyl algebra generated by {Z;q, 0ia : 1 < i < n,1 < « < r} and relations
of the form

[Oia,xjp] = 0ij0ap, 1< 4,7 <n,1<a,B <
We will need the following fact in Section 5.
Proposition 2.2. If r = n, then the map L: U(gl,)) — PD(n,r) is injective.

Remark 2.3. In fact, this follows from the fact that U(gl,,) is isomorphic to the algebra of all left-invariant
differential operators on GL,,. See also [5, Section 1].

Denote by E, X and D the matrices, whose (¢, j)-th entry equals E;;, z;; and 0;;, respectively. In particular,
we have a formal identity

L(E)=X-DT.
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3. KIRILLOV ALGEBRA, BIG ALGEBRA AND MEDIUM ALGEBRA ON P(n,7)
3.1. Invariant polynomials on gl,,. For each 0 < k < n define the following element of S(gl},):
e (Y) = tr(A*Y), Y € gl,,,
where AFY is the operator in End A*(C™) which is induced by the natural action of Y € gl,, on C”, i.e.
APY:vi Ava A Avg = Yur AYus AL A Y, v; € C

We also set ¢o(Y) = 1.
Alternatively, one can define the elements ¢ as the coefficients of the characteristic polynomial of Y:

det(Y — z-Id,) = > (=1)" Fer(v) - 2" *
k=0
Denote by y;; the coordinates on gl, which correspond to standard matrix units F;; € gl,. Then, Y = [yij]ﬁjzl
and

(3.1) a(Y)= ) detYys.
re()
It is well-known that elements ¢y, ..., ¢, generate the ring of GL,-invariants of S(gl,).
Proposition 3.1. The ring S(gl};)®" is a free polynomial ring in cy, ..., cy.

3.2. Construction of Kirillov algebra. Let 7: GL,, — V be a finite-dimensional representation of the group
GL,, and let 7: gl,, — End V' be the associated representation of Lie algebra gl,,. Define the so-called Kirillov
algebmﬂ of V as

€ (V) = (S(gl}) ® End V)Chn,
In other words, Kirillov algebra is the algebra of GL,-equivariant polynomial maps from gl,, to End V, i.e. for

Fez(V)
(3.2) F(Ad(g)(Y)) =7(9)F(Y)7(9)~", g € GL,,Y € g,

Note that € (V) is an algebra over the ring S(gl))%'». The elements of S(g[})?'» are realized inside €' (V) as
scalar operators.
Then, we define the so-called Kirillov operator D = Dy which acts on € (V) as follows: for any F € (V)

DAY= 3 o

,j=1

(Y) - m(Eij).

Remark 3.1. One can view Kirillov operator as a some kind of polarization operator.

It follows from the definition that for any positive integer p we have

(3.3) (DPE)(Y) = ) Y ———— ) 7B, - Eij,)-

i15eemrip=1j1,erip=1

Alexander Kirillov in [6, Lemma 1] and [7, Section 1.4] hinted the following fact:
Proposition 3.2. The operator D maps € (V) to itself.

Proof. We first prove the following lemma.

Lemma 3.3. For any g € GL,, and any 1 < k,l < n we have the identity

n

Z [Ad(g)(Eji)lik - Ad(g)(Eij) = .

i,j=1

Proof. Recall that on gl,, there is a non-degenerate GL,-invariant pairing, namely the trace form (A, B)
tr(AB). Denote the element of gl,, on the left-hand side by A. The equality A = Ej; is equivalent to
Ad(g)~'(A) = Ad(g) "' (Ek). In order to prove the latter, it suffices to verify that

tr(Ad(g) " (A)Epy) = tr(Ad(g 1) (Er) Epg) for all 1 < p,q < n.
Indeed, tr(Ad(g™1)(Ex)Epq) = tr(Er Ad(9)(Epq)) = [Ad(9)(Epg)]ki- On the other hand,

n n

tr(Ad(9) " (A)Epg) = Y [Ad(9)(Bji)lik - tr(Bij Epg) = > [Ad(9)(Eji)luk - GigSjp = [Ad(9) (Epg)iks
i,j=1 i,5=1
which concluds the proof of the lemma. O

LAlso known as classical family algebra, see Kirillov’s original papers [6} [7].
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Now let us return to the proof of Proposition We know that for any g € GL,, and Y € gl,, the identity
(FoAd(g~1))(Y) =7(g9)F(Y)7(g)~! holds. Hence,

(P 1)) = 7o)

oF
ayji

(Y) 79

Then, we obtain

#(g) (DF)Y) 7 (g) = 3 #o) o (v) - n(B)io) L = 3 7o) o (V)7(g) ™ m(Ad(g)(Eyy)) =

=1 ;i ] 0yji
= Y o ((FAdM) (A0 E) = Y0 S0 5 (Ad(g)Y) - Adg)(Exls - m(Ad(9) (E:y) =
ij=1 I i,j=1k,l=1
=3 D (Ad()(1)) - 7(Bu) = (DF)(Ad()()),
k=1 Yik
due to lemma above. Thus, DF satsifies and hence, belongs to ¢'(V). O

Remark 3.2. One can generalize the construction of Kirillov algebra, operator D and the results of this
subsection for any semi-simple Lie algebra g. The corresponding operator D can be described using a non-
degenerate invariant symmetric bilinear form on g (e.g. the Killing form in the case of simple g).

The explicit formulas for specific elements of € (V') are often quite complicated. However, these formulas can
be simplified if one restrict elements of Kirillov algebra to Cartan subalgebra . Moreover, these restrictions
uniquely determine the elements of € (V):

Proposition 3.4. The restriction map F — F|y, F € €(V) is an injective algebra homomorphism.

Proof. We use the argument outlined in [6 Theorem 2]. It follows from the equality (3.2)) that the restriction
Fly completely determines the map F': gl, — End P(n,r) on the set of all regular semi-simple elements of gl,,
(those are conjugate to elements of ). Since the latter set is Zariski dense in gl,, the claim follows. O

The following statement shows that in order to study the Kirillov algebra of V one can study the Kirillov
algebra of a “larger” representation.

Proposition 3.5. Let V =@,V be a direct sum of GLy,-modules. Then, the natural algebra homomorphism
R, € (Vo) = € (V) induced by the embeddings v : End(V,) — End(V') is injective.

Proof. The map in question sends a family of maps F,: gl,, = End V, to amap ) ta 0 Fy: gl,, = € (V). Note
that this expression is well defined since for every Y € gl,, the summand (¢, o F,)(Y) belongs to ¢ (End V).
In particular, this map is indeed an algebra homomorphism. The injectivity now follows from the injectivity of
maps tq- O

3.3. Kirillov algebra for P(n,r). Now consider the gl,-module P(n,r) = C[Mat(n,r)]. By [14, Ch. VII, §49]
(see also [3, Proposition 3]) the highest weight vectors of P(n,r) are as follows:

pi
Pa [L’ill N xill
1| Ti1 Tqp2
|xi11| : 9
Tipl  Tiy2
1‘7;11 e zill
where 0 < [ < min{r,n}, p1,...,p; are arbitrary non-negative integers and 41,...,4; are arbitrary distinct

elements of {1,...,r}. The element above is of weight (p1 + ...+ p1,...,pi—1 +01,91,0,...,0).
On matrix space Mat(n,r) there are natural actions of groups GL,, and GL, which induce actions of these
groups on P(n,r). Namely, for any A € Mat(n,r), g € GL,, and h € GL, we have

L(g)(P)(A) = P(¢" - A), R(h)(P)(A) = P(A- h).

Note that these two actions commute and give rise to an action of GL,, x GL, on P(n,r). Then, Howe duality
(see [, Section 2.1.2]) implies that the GL,, x GL,-module P(n,r) = C[Mat(n,r)] decomposes as follows:

(3.4) Pln,r)~ @@ V)W),
L(AN)<r

where the summation is over all partitions A = (A1, ..., A,) of length at most r (i.e. with A\; = 0 for ¢ > r). Here
V(A) and W(A) denote the irreducible representations of the highest weight A of GL,, and GL,, respectively.
In particular, we conclude that P(n,r) contains as subrepresentations all irreducible representations of gl,, that
have highest weight A with £(\) < r.

Let us now apply the Kirillov algebra construction for GL,-module P(n,r). In view of Proposition
and decomposition (3.4), the algebra ¢ (P(n,r)) contains ¢'(V()\)) as a subalgebra for all dominant weights
A=(A,..., ) with Ay > ... A, >0 and £(\) <.
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3.4. Big and medium algebras. Recall that big algebra (V) in type A is the subalgebra of € (V') generated
by elements

Mpvq = Dq(cp+q)a 0 S b, q S n, p + q S n.
The medium algebra .Z (V') of P(n,r) is a subalgebra of Z(V') defined as follows:
M (V) =(F.D(F): F e 5(gl;,)") c B(V).

Now let us give a more explicit formula for the generators of Z(V). Recall that 7: gl, — EndV is the
representation of gl,, which comes from GL,-action on V.

Proposition 3.6. For any Y € gl,, we have
q I
(35) MP;Q(Y) =D (CP"FQ)(Y) = Z sgn Jl J2 det Y11Jl Symdetﬂ-( )J212'
117J1€([;])
12’126([2])
LUl =J1UJs

Proof. We have

CP-H](Y) = Z Sgn H ylsla( y = Z Sgn(a)yiliau) o Yipgio(ptq)

eSS ()
where the first summation runs over all (p + g)-element subsets I = {i1,...,ip44} of [n]. Here we identify (p[ +]q)
with &,4,\[n]2TL (see Remark . Applying the operator DY (see also (3.3])) we obtain
Diep)(V) = D> 3 senlo) 3 [ wiiew 20 T 7(Bicipinn) =
IE( [n] ) €S ptq VE(“’?’]) veVe TeES(V)veEV
- Z Z Z Z sgn(om) H Yiviory ) Z H T(Bigryoirgey) =
1e([m) ve () [0]€6, 1 /S (V) TS (Ve) veve T2€6(V) vEV
= Z Z det(Yr(ve),(o-11)(ve)) sgn(o Z H T( By oy uyira ) =
1e(Ihy V() [0]€6 10 /S (V) ES(V) veV
= Z Z sgn(o) det(YI(VC)(o*lI)(VC)) symdet F(E)(Ufu)(v)’[(\/),

TE(52) Ve( i) IS0/ V)XV

where we denoted V¢ = [p+¢]\ V. To conclude the proof it remains to note that the summation over I € (p[i]q),

Ve ([p:‘”) and [0] € 6,14/6(V) x &(V°) is equivalent to the summation over I, Iz, J; and Jo as in (3.5).
Indeed, if we put

L = I(Vc)a Jp = (0—71])(‘/6)’ I, = I(V)a Jy = (O—ilf)(v)a

we would get the right-hand side of (3.5) since sgn(c) = sgn (2 {,22) O
The next proposition relates big (resp. medium) algebras of direct sums with big (resp. medium) algebras
of summands.

Proposition 3.7. (i) The image of the algebra homomorphism @, € (Vo) — € (V) from Proposition
contains the big algebra B(V).
(ii) For each « there exist surjective homomorphisms B(V) — B(Vy) and A (V) — M (Vy).

Proof. The definition of the Kirillov operator implies that subalgebra @), € (V) inside € (V) is stable under
the operator Dy . Moreover, the restriction of Dy to @, % (V.) coincides with @, Dy, . The first part
now follows from the fact that ci,...,c, € S(gl)% are realized inside € (V) as scalar operators and the
identity Dy, (cx @ idv) = @, DY, (ck ® idy, ) for all p > 1. The required homomorphisms Z(V) — AB(V,) and
MV )—>,///( %) send DY (ck®1dv) to DY, (¢ ®idy, ). O

3.4.1. Generators of big algebra. From now on we consider the case V' = P(n,r). Proposition implies that
many properties of big algebras of irreducible representations can be read off from Z(P(n,r)).

Observe that the big algebra %(P(n,r)) is contained in S(gl}) ® PD(n,r). In other words, elements of big
algebra are certain differential operators on P(n,r) whose coefficients are polynomials in variables ;o and y;.
One of the main results of this note is the explicit formula (the so-called normal form) for operators M, ,.
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Theorem 3.8. The normal form of the operator M, ,(Y') is as follows:

q
_ —£ q
(39) Myal) =3 CRUTIHE
LI
x> sen (Ji JZ) detYr, s, > > (o, Lo, Ja(V), (W) det(X s vy.r) det(Dp, vy, 1)
II;JIE([Z]) RE([Z])V’WE([Z])

127J2€([Z'])
LUl =J1UJds

Corollary 3.9. Big algebra (P (n,r)) is generated by operators {Fp 4 : p,q > 0,p+ q < n}, where

I I
(3.7) FpgY)= > sen (Ji JZ) detYr,s, > det(Xy, g)det(Dy, r)
nie(')) re('y)
127-]26([':])

ILula=J1UJsy

In particular, operators {M, q:p,q>0,p+q <n} and {F, 4 :p,q > 0,p+ q < n} are related to each other as
follows:

(3.8) M,, = f:(—nq—f(q—e)m{g} (";ff)Fp’e.

£=0

We prove these formulas for M, ;, and F}, ; in the next section.
Remark 3.3. Note that both sets {F)}7_; and {M,o}5_, are generator sets for S(gl;,)%".

3.4.2. Restriction to Cartan subalgebra. The formulas (3.6 and (3.7) become simpler if we restrict Y € gl,, to
Cartan subalgebra b, i.e. to diagonal matrices.

Proposition 3.10. For Y = diag(z1,...,2,) € b we have

Fog¥)= > Iz D det(X;r)det(D,g).

[e([z]) i€l Re([;’])
Je(["])

q

INJ=o
Proof. This is a consequence of Corollary and the observation that for Y € bh the determinant det Y7, s,
vanishes unless I; = J;. O

We use this formula in the proof of commutativity of the big algebra (Theorem [7.1]).

4. PrROOFS OF THEOREM [3.8] AND COROLLARY

In this section we prove Theorem and Corollary i.e. formulas (3.6) and (3.7). The proof is purely
computational and reduces to some identities in Weyl algebra.

4.1. Computation of the symmetrized determinants. In view of Proposition [3.6] to prove Theorem [3.§|
we first need to get a formula for symdet L(E);;. Recall that for k-tuples I = (iy,...,i) and J = (j1,...,Jk)
in [n]% the symmetrized determinant symdet L(E; ) is defined as

symdet L(Ery) = sgn(o7)L(E;, i ) - LB, i) =

o,7ES

n
§ E sgn(oT) - xia(1>a1ajr(1)a1 coo Ly pyak 8jr(k)ak :

ai,...,ap=10,7€S

Our aim is to obtain the reduced expression (the normal form) for symdet L(Er;) in the algebra PD(n,r) of
differential operators on gl,, with polynomial coefficients. The computation is divided into several steps.
We start with the following auxuliary identity.

Lemma 4.1. Let N be a positive integer. For any permutations o,7 € Sy and any s € {1,..., N} define
63(0', 7_) — 0) Zf U(S) S T(S)ﬂ
1, ifo(s) > 7(s).
Then, for any aq,...,an the following identity holds:

(4.1) S sgu(o7) - (a1 +81(0,7) - (an +0n(0,7)) = (~L)NHN = e + ...+ an).

o, TES N
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Proof. The identity clearly holds for N =1, so let us assume that N > 2. Observe that the left-hand side can
be expressed as

N
ZC@ . 65(041, .. .,aN),
=0

where eg(aq,...,ay) is the ¢-th elementary symmetric polynomial aq,...,ax and Cy,...,Cy are certain real
numbers. Therefore, to check the identity (4.1)) it sufices to calculate coefficients C; for every 0 < ¢ < N. Note
that Cy is equal to the coefficient of the term «; ...y of the left-hand side. Then, it is not difiicult to see that

N
Co= Y sgn(or) [] 6a(o,7).
o, TESN s=0+1

In other words, Cy is the sum of sgn(o7), where (o, 7) runs over all pairs of permutations in &y such that
o(s)>7(s) forall {+1<s<N.

Let 'y C & X Gy be the set of all such pairs. Now let us consider several cases:
e / = 0. In this case we have
Co = Z sgn(or) - 01(0,7)...0n(0,7) =0
o, TES N

because for any o, 7 € Sy at least one of d,(0, 7) is zero (for example one can take s = o=1(1)).

e ¢ = 1. We claim that in this case the set 'y = I'y_; contains exactly (N — 1)! elements. Indeed, by
definition a pair (o,7) € S x S belongs to I'y_; if o(s) > 7(s) for every s € {2,..., N}. One checks
that this holds if and only if these permutations satisfy o(1) = 1, 7(1) = N and o(s) = 7(s) + 1 for all
s=2,...,N. In particular, [T y_1| = (N — 1)! and for any (o, 7) € I'y_; the permutation o7~! is the
cycle (12 ... N). Hence,

Ci= Y sen(or)=Tnx |- (DN = (DN (N =1L
(o,7)ElN_1

e 2 < ¢ < N. Note that for any permutations o', 7" € & which fix each of £+ 1,..., N the pair (o,7)

belongs to I'y = 'y if and only if (60’,77") € T'y. This and the equality

Z sgn(o’r') = < Z sgna') ( Z sgnr’) =0
o/ T'eES, o'eS, T'ES,
imply that Cy, =0 for all 2 < /¢ < N.

Combining everything together, we obtain

o, 041,
Ce = {(1)N1(N 1), =1,

which is equivalent to (4.1)). O

Corollary 4.2. Let N be a positive integer and let £ € {0,1,...,N}. Then, in the notation of Lemma we
have

0, te{0,1,...,N -2},
D sgn(or)(en+61(0,7)) .. (e +0(0,7)) = { (~1)NTHN — 1), {=N-1,
o, TESN (—l)Nfl(N—l)!-(a1+...+aN), {=N.
Remark 4.1. For £ =0 we define the left-hand side as > ¢ sgn(o7).
Proof. This follows from (4.1)) after taking derivatives of both sides with respect to ay41,...,an. O

Next we prove the following identity in Weyl algebra which essentially computes the symmetrized determinant
symdet L(E)s in the simplest case r = 1.

Lemma 4.3. Consider the Weyl algebra generated by variables uy, ..., u, and the corresponding partial deriva-
tives O1,y...,0n. Let I = (iy,...,ix) and J = (j1,...,jx) be two k-tuples in [n]E. Assume that I and J have ¢
common elements, 0 < ¢ < k. Denote

(4.2) U(I,J) = symdet ([uiaajﬁ]lé,ﬁzl) = Z sgn(UT)uig(l)ajT(l) Wiy 0 D)y -
o, 7ES
Then, U(1,.J), as an element of Weyl algebra, can be simplified as follows:
e if { =k and ™ € & is such that j; = irq) for all | € {1,...,k}, then U(I,J) = (—1)* 1 (k — 1)!-
sgn(m) 3 sep wili;
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e ifl = k—1and m € & is such that ji = irqy for all 1 € {1,...,k — 1} and jr # i), then

U(IL,J) = (=1 (k= ! sgn(m)ui, ;.
o if{ <k—2, then U(I,J)=0.

Moreover, viewing I and J as functions on [k] = {1,...,k} one can express U(I,J) as follows:

k
U(LT) = (D k=D Y U ey = Il gsy) - sen(m)u, 95, -

TES s=1

Proof. We start with the following observation: for any permutation 7 € & we have ¥(7-I,J) = sgn(w)-¥(I, J),
where 7 - I = (iz-1(1),...,iz-1()). Therefore, it suffices to prove the statement in the case when iy = ji, ...,
Z'g = jg and

{il,...,ik} N {jl,...,jk} = {il,...,ig}.
Recall that £ = |{i1,...,i} N {j1,- -,k }]-

Denote K = (i1,...,4) = (j1,--.,7¢). To simplify the notation let us also assume that K = (1,...,¢).
Now note that elements wu;,, ,...,u; and 0j,,,,...,0; commute with each other and also with {u;,0;}ick.
Therefore, we can rewrite U(I,J) as
(43) \I/(I, J) = uik+1 e Uikaj£+1 e 6jk . q)(f, K),

where ®(¢; K) is a certain element in Weyl algebra generated by u;, d; with ¢ € K. Namely, ®(¢; K) is obtained
from the expression for ®(I,.J) by removing all u; and 9; with 7 ¢ K. One finds that the action of ®(¢; K) on
a monomial ui" ... u,*, where aq,..., o € Ny, is given by

ai ayp

QLK) ug) = | Y sgn(or)(ar+ (0T (e + Se(o7 r ) | ugt g

o, 7TES
where 4;’s are defined as in Lemma [{.1] Indeed, this follows from the identities
(i) (ui™ .. oug?) = a; - uft . oupt, (Gug)(uft . oupt) = (g + 1) - uft oyt 1<i < L
Now observe that
Z sgn(or)(ar +01(c 77 ) (e + 007 7)) = Z (a1 +61(0,7)) ... (g + de(0, 7)),

o, 7ES o, 7TES
and hence, Corollary [£.2] implies that

o if 0 < ¢ <k—2, then ®(4; K)(ui" ... u;*) =0;

o if { =k —1, then ®(4; K)(uf ... up?) = (=) 1k — 1)l uft . ouf?,

o if { =k, then ®(4; K)(uft ... uf*) = (—1)* 1k —=1)! (o1 + ...+ ag)uf™ ... up’.

Since the elements of Weyl algebra are uniquely defined by their action on the corresponding polynomial ring
Clua, ..., u,] we obtain

0, <U<k-2,
B(65K) = { (<) k- 1), ok,
(COF (k= )Y iy €= k.
Combining this with (4.3]) concludes the proof. O

Lemma 4.4. Fix ay,...,a; € {1,...,7}. For any two k-tuples I = (i1,...,ix) and J = (j1,...,jk) of distinct
elements of {1,...,n} denote

A<Iv J) = E Sgn<UT) ’ xia(l)alajr(l)al <o Ly pyak ajf(k)ak :

o, 7€ES

Then, we have the following identity
(4.4) A(ILJ) = (=1)* 4k —0)! E: e(I,J,1(V), J(W))det(Xr(vy,r) - det(Dywy.r),

where R ={ai,...,a} and £ = |R)|.

Remark 4.2. Here I(V) and J(W) are the subtuples of I and J that correspond to V' and W, respectively. The
k-element subsets V and W are viewed as k-tuples with the ordering chosen in an arbitrary way (see Remark
. Note that the summand does not depend on a choice of the ordering of V' and W.
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Remark 4.3. Observe that the formula for ¥(7,J) from Lemma is a particular case of (4.4) when ¢ =
|R| = 1. Indeed, for any I,J € [n]&

k
SN 1l gsy = Tlpggsy) - sen(r) =e(1, T, s, 9),

TES s=1

where in e(1, J, s, s) the element s is viewed as a 1-tuple.

Remark 4.4. In particular, when I = J, the formula can be simplified as follows:

A(LD) = (=DM k=0 Y det(ferq) dvevier) - det([Drw) ilvevier) =
ve(')

= (D) k-0 > det(Xpv),r) - det(Dry,p)-
VE([H)
Proof. Define the decomposition {1,...,k} =||_, K; via
K ={je{l,...,k}:aq; =1}
Let my; be the cardinality of K for each [. Note that R = {l € [r] : m; > 0} and ¢ = |R|. Denote by &(K;) the
group of permutations of the set K; viewed as a subgroup of &. In particular, §(K;) ~ &,,, for all [. We also
denote by &(K) the subgroup of &, which stabilizes each of the subsets R;, i.e. 6(K) = &(K7) x...x 6(K,).
Towards the end of the proof we will regard any sequence {c;};cx, indexed by elements of K; as an m;-tuple
by considering the elements of K; in ascending order. Since we are working in a non-commutative algebra let
us make a convention that products over K, are considered in the ascending ordering as well.
For any permutation o € &y and any [ € [r] define the m;-tuples 0= 11|g, and 071 J |k, as follows (cf. (2.1))):
0_1[|K1 = {ia(s)}seKu 0_1I|Kl = {ja(s)}séK;-

For any two p-tuples U = (u1,...,up) and V = (v1,...,v,) in [k]2 define

P
e(U,V) = Hmuizﬁwl = Tuy1Ou1 -+« Tuy 1Oy l-

i=1
We also denote (cf. Lemma
1, l¢R,

U, (U,V) =
(U, V) {symdet ([xuulavﬁl]gﬂzl) , leR.

Observe that for any 71, 7 € 6(K) we have

(4.5) Ui((om) |k, (t72) " |k,) = sgn(m|r,) sgn(malx,) - W(o |k, 77 |K,),

where 7;| i, is the restriction of permutation 7; € G(K) to subset K; (recall that m;(K;) = K;). Finally, denote
by &1/G(K) the set of all left cosets of G(K) in Sy.

With all these notations we can now proceed to the proof of (4.4). Since x;, and 9;;, commute whenever
a # b, we can rewrite A(I,J) as follows:

A(Iv J) = § Sgn(UT) : miau)alajﬂmm s xio(k)akgjr(k)ak =

o, TES),
= > sen(on)- TT 0100 k7™ i) =
o, 7ES =1
T
= 2 > senlomrm) - [[0u(om) " i, (7)) =
[0],[r]€6/6(K) m1,m2 €S (K) =1

= > sgn(oT) > sen(mm) [[©ul(om) Tk, (rm2) " k)

[o],[r]€6k /6 (K) 1,2 €S (K) =1

Note that for any o € &, the tuples 07 11|k, and 0~ 1J|g, depend only on how o acts on K;. Recall also that
S(K)=6(K1) x ... x &(K,). Using this for any 0,7 € &), we obtain

> I (SgH(W17T2|Kz)91((07T1)_1I|Km(Tﬂz)_lﬂm)) =

7T1,7T2€6(K) =1

= Hsymdet ([st)lajr(t)l stGKz H\Ifl (o™ I|K,7 1J|Kz)'
=1
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Therefore, we get the following expression for A(1, J):

A(Ia J) = Z Sgn(m’)H\Ill(071[|K“7-’1J|Kl),
[0],[7]€6r/&(K) =1

Remark 4.5. The summation here runs over all the left cosets of &(K) in &;. Note that the expression
sgn(o7) [1/_, Yi(c~ |k, 7" J|k,) does not depend on the choice of representatives of [0],[7] € &;/6(K).
Indeed, by (4.5) for any 71,712 € &(K) we have

[[wi(om) ™ |k, (rm2) " T |k,) HSgnmmlm lea Uk, 7 k) =

= sgn(mmy) - H Uy (o g, 7 |k, )
=1

Now we apply Lemmain order to compute for every [ € R the symmetrized determinant ¥;(o 11|, 771 J|,).
Firstly, observe that U;(I;(o), Ji(7)) = 0 unless there exists a permutation m; € G(K;) and an element s; € K]
such that j.(r(s)) = io(s) for all s € K\ {s;}. Moreover, in this case we have

\I/l(O'_II|K“T_1J|KZ) = (—1)ml_1(ml — 1)'><

x> > o ey = 0m) T L () - SETD T (0 0)) 10 (e () 1
meES(K;) sieEK

Combining everything together we get

Al J) = > sgn(or) [ Wilo™ Ik, (rm) " T1k,) = T (=1)™ " (my — 1)

[o],[T]€6k/6(K) =1 IER
X > sgn(or) Y H( o 1I|Kl\{sz}=(Wl)’lJle\{sl})Sgn(m)x(a—m(sl),z)a(f—lJ)(m(sm,z).
[o],[T]€6k /6 (K) siEK; lER
TUEG(KI)
lER

Now observe that &(K) = [[,cz &(K;). Hence, when 7 runs over &;/&(K) and m; runs over &(kK;) for each
I € R the product 7 - [[,c s m runs over &. Therefore, we can rewrite the formula above using the summation
over 7 € &, as follows:

A(LLT) = [T (=1)™ " (my — 1)x

IER

<Y sen(e) Y Y Mo g gsitery =T g gsitery) - sgn(T)H(ma*u)(sl),l@ﬂr(a>>,l)-

[0]€6L/6(K) s1€K; TES, lER
leER

Replacing 7 with 7o and introducing the summation over o € &y, instead of the summation over [o] € &5 /6(K)
yields

AL J) = (=) T my ' x
lER
<D0 Y Y Wlneenreny = 7 oo temy) 58000 T (21060100106 6010)-
o€By, géggl TEG leR

For a given (-tuple {s;};cr as o runs over & the tuple {o(s;)}icr runs over all (-tuples in [k]¢ and each of
them occurs exactly (k — £)! times. Since there are precisely [],c 7 tuples {s;}icr in [];cp R we have

AL J) = (=1)* 4k — 0)!x
<> Mgy qustery =7 g gustery) - sen(m) [ | (II(ul),ﬁ(rlJ)(u,),z)
UEk|E r€6) IeR

Here by [k]f we denote the set of all g-tuples U = {u;};cp of distinct elements in [k]. Let &(U) be the
permutation group of the ¢-element set {u; : [ € R}. Then, we can rewrite the last sum as follows:

(D (k=0
/1

x Z > D Wk juriery =7 JI[k]\{m:zeR})-Sgn(T)H(xuw(uz)),l@(rlJ)(w(um,l)-

Uelk|E ne&(U) TEG), IER

A(I,J) =
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Clearly, for any m € S(U) we have

(4.6) H(I\[k]\{ul:zeR} = T_1J|[k]\{ul:l€R}) = IL(I|[k]\{u,;leR} = (TW)_1J|[k]\{u,;leR})-
Therefore, substituting 7 — 77! we obtain
k—é k‘ !
X Z Z D Ll gutery = 7 T gusiery) - 380(m) ] 216 i 10w =
B rc&(U) T€6, IER
( k 4 k g
= Z D WUl guetery = 7 T w1 ry) sen(r) det([@r(u,), plasser) [T 01 i
kK|ETEG, lER

Similarly, note that

Z det([T1(u.),8la.6eR) Har 1) (w),l = Z
Z

Z det([77(r(un)),8la.per) H =10 (m(ui)) d
Uelk)® lER Te&(U) IR
1
7 Z det J?](uu }a ,BER bgn HaT L) (m(ur))
es(

Uelkl& U) IeER

1
=7 Z det([21(uy),8la,per) - Adet([Or-11)(ua),pla,per) =
S

= Z det([x1(v) ilvevier) - det([Or-17)(v),ilvev,ier)
ve(®)

Plugging this into the previous formula and taking into account (4.6) gives

1) — o)

(=) (k = 0)! "

0
X Z Z Ippv = 7" ppv) sen(r) det([z (o) ivevier) - det([0-1.1)w) Jvevier)
VE([k]) TES

k—¢ k‘ E
= # S Wl = J o Tlupy) sen(r) det([zr() ilvevier) - det([0s(r () ilvevier)

VE( ) TESE

(4.7) A, J) =

Now observe that for any given subset V' C [k] with |V| = £ there exist either ¢! permutations 7 € &, such that
(4.8) I|[k]\V =Jo T|[k]\Va

or none. Indeed, suppose such a permutation 7y exists. Then, any other permutation 7 that satisfies (4.8]) is of
the form 7 = mom, where 7 € G(V). In particular,

sgn(7) det([0(r(v)),llvevier = sgn(tom) sgn(m) det([01(ry(v)),ilvevier = sgn (7o) det([0s(r,(v)) ilvevier

Note that 7 satisfying (4.8) exists if and only if all elements of I|, )\ 1) are contained in J. Hence, the
summation over 7 in (4.7) in fact contains ¢! equal summands. This allows us to write the final formula for

A(1,J):

(4.9) ALT) = (D) k=0 > e, I(V), J(W))det(X(v), r) - det(D s, r)-
v,we(H)

Indeed, to get the (4.9) from (4.7) we just note that 1(1|\y = J o T|x\v) sgn(7) equals e(I, J, I(V), J(W)) if
W = 7(V) and 7 satisfies (4.8]), and is zero otherwise. O

Lemma 4.5. For any I, J € [n]k we have
k
symdet L(E);y =Y (=1)F (k- elel{ } S Y e I I(V), J(W)) det(X vy, r) det(D sy, r)-
£=0 RE([T])VWG([M)

Here by {];} we denote the Stirling number of the second kind, i.e. the number of ways to split a k-element set
into £ mon-empty subsets.

Proof. We start with the identity

symdet(L(E))r; = Z Z sgn(oT) xla(l)alajr(l)al . 'xia(k)akajr(k)ak'

ai,...,ax=10,7€S
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For each choice of aq,...,a; € {1,...,r} we rewrite the products using Lemma It remains to notice that
for any given R € (;) the number of sequences (ay,...,ax) € [r]¥ such that {ay,...,a;} = R equals {’;} -q! O

4.2. Proof of the main formulas. Now we are ready to prove Theorem and Corollary

Proof of Theorem[3.8 By Proposition [3.6] we have

L I
M, ,(Y) = Z sgn (-1 7% ) det Yy, s, - symdet L(E), 1,
’ J1 Ja
e ()
127J26([':IL])
LUul=J1uJy
Applying Lemma [4.5] to symdet L(E) s,1, gives the required identity (3.6)). O

Proof of Corollary[3.9 Indeed, the identity is a direct consequence of and the fact that the expression
sgn (51 322)5(J2,12,J2(V),12(W)), if non-zero, equals sgn (511 IJZ((VX;) The coefficient (";ff) appears as the
number of ways to choose a (¢ — £)-element subset Iy \ I1(W) = J; \ J2(V) in the complement of the (p + £)-
element subset I; U J; = Io U Js.

Then, it follows from that the difference M, , — ¢! - F} 4 is a linear combination of F,, with ¢ < gq.

Therefore, sets {Mp q}pt+q<n and {F} ¢} p+q<n generate the same algebra inside €' (P(n,r)). O

5. CAPELLI’S IDENTITIES AND THEIR VARIATIONS

5.1. Classical Capelli’s identity. Assume that » = n, i.e. that P(n,r) is a polynomial ring C[Mat(n,n)]
in n? variables z;;, 1 < i,j < n. Recall that PD(n,r) is the algebra of differential operators on P(n,r) with
polynomial coeficients. Define an element II € U(gl,,) as

Ei1+0  Ep e Erg
) E21 E22 +1 ... EQk
I = rdet(E;; + (i — 1)di5); ;=1 = rdet . . . )
FEiq Eio oo Erp+Ek-—1

The next statement was observed by Alfredo Capelli [1I, Capelli] and was used by Hermann Weyl in his
treatment of invariant theory for GL,, [13, Weyl].

Proposition 5.1 (Capelli’s identity). The image of II in PD(n,r) equals

(5.1) L(IT) = det(X) det(D).

In particular, the expression on the left is a GLy-invariant differential operator.

Remark 5.1. Since L(E) = X DT one can rewrite this identity as rdet(X DT 4+ Q) = det(X)-det(DT), where Q
is the diagonal matrix with entries (0,1,...,n —1). In other words, the Capelli’s identity resembles the identity

det(AB) = det(A) - det(B) for matrices with commuting entries. However, since U(gl,,) is non-commutative
and one has to introduce the quantum correction @ to get a valid equality.

Example 5.1. For instance, if n = r = 2, then this is equivalent to

211011 + 212012 + 0 211021 + 12022 _ T11  X12
rdet =d .

221011 + 222012 221021 + 222022 + 1 To1 X22

et 611 a12
a21 a22~

One can verify this by direct computations. Indeed, the left-hand side equals
LHS = (211011 + 12012) (221021 + 22022 + 1) — (211021 + 12022) (221011 + x22012) =
= 11221011021 + 11222011022 + 212221012021 + 212222012022 + £11011 + £12012—
— (11221021011 + 11011 + T11222021012 + 12021022011 + 12022022012 + T12012) =

= 211022011022 + 12021012021 — 211222012021 — 212221011022 =

_ _ _ _ Tl Ti2| O Oz
= (x11%22 — T12221) (011022 — D12021) = det [Im :1:22} det [821 822.]'

5.2. Capelli’s identities for rectangular matrices. Now let r be an arbitrary positive integer. It turns out
that one can generalize the Capelli’s identity for all minors of the matrix F.

Firstly, for arbitrary k-tuples I = (i1,...,4;) and J = (ji,...,x) in [n]* introduce the following element
II;; € U(g[n)

II;; = fdet[Eiajg + (a - 1)5iajﬁ]§taﬁ:1'
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For example, if [ = J = (iy,...,ix) € [n]%, then
E; i, +0 Ei e Ei i,
I, — rdet Eml Emz +1 . Emk 7
EZW1 E’ZM2 . Ei i, —|— k—1
which coincides with IT above when I = (1,2,...,n).

Proposition 5.2. The following equality holds in U(gl,,):

n

rdet(Eij + (1 — 1= 2)6i5)f j21 = Z(—l)kZE - Chk,
k=0

where 2£ = 2(z —1)...(z =k + 1) and

Z ;.

1e(Bh)

Moreover, the elements Cy belong to the center Z(gl,) of the universal enveloping algebra U(gl,) and their
images in PD(n,r) are as follows:

(5.2) L(Cy)= Y > det(Xsx)det(Drx)

IE([ ]) KE([ ])

Remark 5.2. In formula (5.2) we regard K € ([z]) as an element of &;\[r]&, i.e. as k-tuple with arbitrarily
chosen ordering of elements. Note that the term det(X;x)det(Drx) does not depend on this choice, so the
expression on the right is well defined.

Remark 5.3. The elements Cj, are often called Capelli generators. Moreover, Z(gl,,) is a free algebra gener-
ated by C1,...,C,. The classical counterparts of Capelli generators are the coefficients ¢ (see (3.1)) of the
characteristic polynomial of Y € gl,,. The elements {c,}?_, are the generators of S(gl;)%").

5.3. Proofs of Propositions and In order to prove Capelli’s identity and its variants we prove a
more general version for arbitrary minor II;;. The following statement can be viewed as a non-commutative
analogue of Cauchy-Binet identity from linear algebra.

Proposition 5.3 (Cauchy-Binet type identity). For any I,J € [n]* the image of Uy in PD(n,r) under the
map L equals

(53) L(H[J Z det X]K) det(DJK)

KE([k])
Remark 5.4. Note that the right-hand side of (5.3 is skew-symmetric in entries of I and J and hence, the same
holds for L(II7;). From the definition of II;; it is clear that II;; is skew-symmetric in J (as row determinant),

but the skew-symmetricity in I is not immediate from this definition. Formula (5.3)) in particular implies L(IIy )
is zero whenever I or J contains equal elements.

Proof. Induct on k. For k = 1 the identity follows immediately from the definition of L(E;;). Now assume
that k& > 1. Consider any k-tuples I = (i1,...,4) and J = (j1,...,Jx). Denote I' = ( yeensip—1) and
JO = (j1,...,Ji,...,jr) for every | € [k]. Expanding II;; along the k-th row yields

k

II;;, = Z(—l)k_lﬂpj(l) (B, + (k= 1)6i,5),
=1

and hence by the inductive hypothesis,

( )k lL HI/J(Z) ( Z mzkaajla + ) 1ka> =

aglr]

(— Z det XIIK/)det DJ(z)K/ . ( Z xzkaaﬂa +( )5ika>‘

1 (k[—]l) a€lr]

Ma

L(Il;;) =
1

1

[
M»



BIG ALGEBRA IN TYPE A FOR THE COORDINATE RING OF THE MATRIX SPACE 15

Using the identity det(D ;o) g/)Tiva = Tipa det(D o i) + [det(D o) 1), Tipa] We can rewrite the last sum as
follows:

k
L(HIJ) = Z Z (71)k7l det(X[/K/)IL'ika ~det(DJ(z)K/)8jla+
=1 ag€lr] K,e(k[—]l)
(5.4) +h=1Y Y (=D det(X k) - det(D o g )i+
=1 Kle(k[—]l)
k

+> ) D ()M det(Xpke) - [det(Dyw ), Tiral Ojia

=1 a€r] K/E(klill)

Denote the three summands on the right-hand side of (5.4) by ng), S’g,) and Sg), respectively. Observe that
S§1J) equals

S;lj) = Z Z Z k ldet(X]/K/)l‘lka det(DJu)K,)am =

=1 a€lr] g/¢e ( [:] )

Z Z det 'K’ xzka det DJK/ ) Z det X]K det(DJK).
a€lr] K'e ("[:]1) KE([:]

Here by K{,,, we denote a k-tuple in [n]% whose first k — 1 entries coincide with those of K" and whose k-th entry
equals a.. (Recall that K’ can be viewed as a (k — 1)-tuple.) The last equality follows the cofactor expansion of
det(X7x) along the last row.

Therefore, it remains to show that the sum S}?
number ¢ of occurences of ix in the k-tuple J.

(3)

+ S} is zero. We consider three cases depending on the

Case 1. ¢ = 0. Then, for any [ € [k] and « € [r] we have §;,;, = 0 and [det(D ;o g ), Tipo] = 0. Hence, both
Sy (2) and S} are zero which concludes the proof.

In the remaining two cases we use the following lemma.

Lemma 5.4. For any k-tuples I = (i1,...,ix) € and J = (j1,...,jx) in [n]¥ and any i and j, we have
0 I 1.
Z [det(D]’J) sza]a o= ) Zf ¢ [ ] or 7’ ¢
gt det(Dgy), ifip, =1 forpe [k,
where in the second case we put K = (i1,...,0p—1,J,ip+1s-- -, 0k)-

Proof. Tf I contains equal entries or ¢ ¢ I, then it clear that [det(Dry), z;o] = 0 for all a € [r]. Otherwise, if
p € [k] is such that 4, = 4, then [det(Dy), Tia]0jq is zero if o ¢ J and equals to the cofactor of the element 9,4
of the matrix D ; otherwise. Thus, }° c(,1[det(D1s), %ia]0ja = det(Dk ), as claimed. O

Case 2. ¢ = 1. Let p € [k] be such that i = j,. Observe that both sides of (5.3]) are skew-symmetric with

respect to J. Thus, we may assume without loss of generality that p = k. In this case we can rewrite Sf,) as
follows:

S = (k—1) Z ST ()F T det(Xpig) - det(Dya e )8, = (k—1) > det(Xpxr) - det(Dya i)
= 1K/ (‘[111) K/E(k[ﬂl)

Applying Lemma gives the following expression for the Sg)

S = Z S0 (=) det(Xpx) - [det(D o o), Tiyal O =

=1 Oée[’l"] K'e ( [”']1)

= > > (DM det(Xpgr) - (—1)F T det(Dyoo o) =

le[k—1] K'e ([7]1)

=—(k—1) > det(Xpg)-det(Dyumg).
Kle(k[ill)

Therefore, the SEQI) and S}SI) add up to zero, as claimed.
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Case 3. ¢ > 1. Let us show that in this case both the S ?,) an S(?, vanish. If ¢ > 3, then each (k — 1)-tuple
JO 1 =1,...,k, contains at least two entries that are equal to i,. Hence, all terms in sums S 17 ) and Sg}) are
zero since det(DJzK,) =0.

Now assume that ¢ = 2. Similar to the second case we may assume that jr_1 = jr = ix and j; # i for

I <k —1. Then, for Sf]) we have
k
S7) = Z Z )t det(X g - det(D gy )0y g, =

= (k* 1) Z (7det(X]/K/) ~det(DJ<k_1>K,)+det(X1/K/) 'det(DJ(k)K/)) =0
Kle(k[ill)

because det(D ;) = 0 for I < k — 1 while J*#=1 = jk), Lemma implies that SS}) equals

S?”’}—ZZ S ()R det(Xpxe) - [det(D o o), Tigaljna =

=1 a€lr] gre (k7]1

= Z det XI’K’ Z (7 [det(DJ(k—l)K/), Cﬂika]ajkila + [det(DJ(k)K/), xika]ajka) =0
Kre(,) a€lr]

since J=1 = J(k) and Jk—1 = jk = i}.
Therefore, if ¢ > 1, we have st I J = S}‘}) = 0 which concludes the proof of the proposition. O

Corollary 5.5. For any I,J € [n]* and any o,7 € &, we have Il,1 .5 = sgn(o7) -l ;.

Proof. By the previous proposition, we have the identity L(Il,; ;) = sgn(o7)- L(II;;). By Proposition for
r = n the map L faithfully maps U(gl,,) to PD(n,r), hence the result follows. O
}k

Corollary 5.6. For any k-tuples I = (i1,...,ix) and J = (j1,...,jk) in [n]® we have

Iy =rdet[E; j, + (o — 1)8i, .15 51 = cdet[E;_j, + (k — )8, ;.15 51

Proof. We prove that the images of II;; and cdet[E;,_ ;, + (k — a)éiajﬁ]’éﬁ:l under the map L coincide. This is
sufficient since by Proposition for r = n the map L: U(gl,) — PD(n,r) is injective.
In view of formula (5.3)), the equality L(II;y) = cdet[L(E;_;,) + (k — a)5iajg]§,5:1 is equivalent to

cdet[L(E;, j,) + (k — )8, j, ]k soy = Y det(X;x)det(D ).
Ke()
This identity can be proven by induction on k. In fact, the proof is essentially the same as in Proposition [5.3]
so we only give an outline.
The base case k = 1 follows from the definition of L(E;;). Assume that k > 1. To perform the inductive

step, we expand the column determinant along the first column which together with the inductive assumption
gives that

k
cdet[L(Eiajﬁ)+(k—a)§iajﬁ]’;,ﬁ:1 = Z(_l)k—l< Z xilaaj1a+(k—1)5ikjl> Z det(X 0 o) det(D yr ),
KI

=1 a€lr] e(k[i]l)
where IO = (iy,...,i,...,ix) and J' = (ja, ..., ji). Rewriting this expression in its normal form (use commu-
tation relations in Weyl algebras as in Proposition [5.3)) finishes the inductive step. (I

Remark 5.5. One can prove this identity directly in U(gl,,) using ternary relations and Yang-Baxter equation
(see Lemma in the next section).

Can one use an automorphism of Weyl algebra that switches each z;; with 0;; but reverses the order of
multiplication?

5.3.1. Characteristic polynomial of the Capelli matriz. Define

Cr(2) = Y rdet(Ei iy + (@ — 1= 2)6i;)apeli-
1e(t)

Observe that Cx(0) = C.
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Proposition 5.7. For any 0 <k <n

k
n—k+m
(5:5) =Y -m("T e
m=0

Proof. |5, Howe-Umeda] We induct on k. The cases k = 0 and k = 1 are clear. Denote the right hand-side of
(5.5) by Br(z). Let A be the difference operator defined as (Af)(z) = f(2+1)—f(2). Since both By(z) and Cx(2)
are U(gl,)-valued polynomials in z and By(0) = C(0) = C}, it suffices to check that (ABy)(z) = (ACk)(2).
We have

@BYE) = 3 (1" (") awm G- i(—l)’"m(” AR o

m=0 m=1

Note that m("_:fjm) =(n—-k+1) (”_k+m), and hence we obtain

m—1

= n—k+m+1
(ABp)(z) =(n—k+1) > (- ’”“( )z’”~Ck1m =—(n—k+1)Byp_1(2).
m=0 m
Now let us compute (AC})(z). For any k-element subset I = {i1,...,4x} of [n], where iy < ... < iy, we set
Eilil + 0 Ei1i2 . Eiﬂ'k
b Eigil E’iziz —+ 1 e Ei?ﬂ'k
EH: . . . . and H[]( )—rdet( H—Z Idk)
Eikil Eikiz e El”k + kE—1

Then,
k
(AI)(2) = (2 +1) = Tpy(2) = Y (rdet(Ef, — (2 4+ 1) - Idg +A,_1) — rdet(E}, — (2 +1) - I, +A,)),
p=1

where A, is a diagonal matrix with first p diagonal entries equal to 1 and the last k — p entries equal to 0.
Expanding the row determinant of E% + z - Idy, +A,_1 along the p-th row gives

rdet(E}, — (2 +1) - Idy, +A,_1) = rdet(ES, — (2 + 1) - Idy, +A,) — rdet(E% ), — 2 - Ide_1),
where I(®) = I\ {i,}. Therefore,
(ACK)(2) = > (AIly)(z S e (2) = —(n — k +1)Croi(2).
IE([n]) Ic [Z p=1
By the inductive hypothesis, By_1(2) = Ci_1(2). Therefore, (ABy)(z) = (AC%)(z) which concludes the
inductive step due to Bg(0) = Cx(0) = Cy. O

6. YANG-BAXTER EQUATION, YANGIAN AND TERNARY RTT = TTR RELATION

Here we review several computational tools related to Yangians and R-matrix formalism. We are essentially
following book by Molev (see [8, Section 1] for more details).

6.1. Notation. Let {e;;}]';_; be the standard matrix units of Mat(n, n) and let { E;;}7';_; be the corresponding
generators of the universal enveloping algebra U (gl,,). Matrix units {e;;}}',_; act on C" spanned by ey, ...,en
in a usual way:

€ij€k = (5]‘}961‘.
Most of computations will be performed inside algebras of the form
U(gl,) ® (EndC™)®™,

For any C = Z” 16 ® ey € U(gl,) ® EndC™ and any D = sz’k)lzl dijriei; @ e € (EndC™)®? (these
operators might depend on some parameters) we define

= Z Cij & 1®(a—1) Qe & 1®(m—a) S U(g[n) ® (End (Cn)®m
ij=1
and
Dy, = Z dijia - 120D @ e © 1907970 @ ¢ @ 19(m=b) ¢ (End C™)®™
ij=1
Usually we identify (End C™)®™ with the subalgebra 1 @ (End C™)®™ inside U(gl,,) ® (End C™)®™
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m

Each element o of symmetric group &, defines an element of (End C")®™ whose action on (C™)®™ corre-

sponds to permuting the tensors via o. Namely, 0 € &,,, corresponds to

n
Z Ciriya) X... Q0 €l (m) € (End Cn)@m.

T1yeeytm =1

Clearly, this gives rise to an embedding of the group algebra C[&,,] into (End C")®™. We denote by A, the
antisymmetrization operator, i.e.

n

A, = Z sgn(a) Z Cirig) &...Q Cirmi(m) S (End(C")®m

(TEGm, i],“.,im=1
It is not difficult to see that A2, = m!- A,, and A,,P;; = Pij A, = — Ay, for any distinct 4,5 € {1,...,m}.
6.2. On R-matrices. Define the Yang R-matriz
n
R(u) =1 —u"'P, where P = Z eij ® €jj.
i,j=1
Next, we recall the Yang-Bazter equation:

Proposition 6.1 (Yang-Baxter equation). For any commuting indeterminates u, v and w

(61) ng(u - ’U)ng(u - U))Rgg(l} - U)) == RQg(’U - w)ng(u - U))ng(u - U).
We also define for any m > 2 commuting indeterminates w1, ..., u,, the following rational function:
(62) R(uh U2y« - -y um) = (Rm—l,m)(Rm—Z,mRm—2,m—1) e (le e R12)a

where we use shorthand notation R;; = R;j;(u; — u;).
Remark 6.1. Note that for m = 1 this is just Yang R-matrix: R(ui,us) = Ria(u; — ug).
There is an alternative definition of R(u1,uz, ..., um).
Lemma 6.2.
R(uy,ug,y ... um) = (Ri2...Rim) - . (Rm—2,m-1Rm—2.m)(Rm—1,m)

Remark 6.2. Note that for m = 2 the statement of the lemma is trivial and for m = 3 it is equivalent to the
Yang-Baxter equation.

Proof. We need to check the following equality:
(Riz...Rim) - (Rm—2m-1Rm—2,m)Rm-1,m) = (Rm—1,m)(Bm—2,mBm—2,m—-1) - - . (Rim ... R12).
We induct on m. The base case m = 2 is trivial, so assume that m > 3. Then, our aim is to check that
(6.3) (Riz... Rim)R (u2y ... yum) = R (u2y ...y um)(Ripm - . . R12),
where
R'(u2,...,um) = (Rm—1.m)(Bm—2mBRm—2.m-1) - . (Ram ... Ra3)
since by the inductive hypothesis we also have
R'(ug,...,um) = (Raz...Rom) ... (Rm—2.m-1Rm—2.m)(Rm—1.m)-
Now we need the following auxiliary identity.
Claim. For any 2 < k <m
(Reym - Rig 1) (Riz - - Rig—1)(Rim - - Rik) = (Ri2- - R k1) (Ram - - Ri i) (Rkym - - - R ket1)-

To prove this claim, note first that any two R-matrices with disjoint sets of indices are permutable. Hence, we
have

(Rieym, - - Riejor1)(Ra2 .- Rij—1)(Rim - - Rig) = (Riz ... Rij—1)(Riem - - - R jot1) (Ram - - R1 i) =
= (Riz2...Rip—1)(RemRim) - (R o1 R k1) R k-
Applying Yang-Baxter equation for products Ry x4 R1 k+iRik, j =1,...,m — k, we obtain
(Reym - Rep1) (B2 . Rig—1)(Rigm .- Rig) = (Ria. .. Rip—1) Rip(RimBRrm) - - - (Ripr1Reps1) =
= (Riz...Rix)(Rim .- R1k+1)(Rem - - - Ris k1)

which concludes the proof of the claim.
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Now we apply the claim above for k = 2, ..., m and obtain

R'(ug, ..., um)(Rim ... Ri2) = (Rm-1.m)(Rm—2.mBRm—2.m—1) - (Ram ... Rog)(Rim ... Ri2) =
= (Rm—1,m) Bm—2mBm-—2m-1) .. (R12R1,m ... R13)(Ram - .. Reg) =
= (Rm—1m) - (R - Reos1)(Riz ... Ry g1 Rim - Rig) ... (Rom ... Rog) =
=(Rm—1,m)---(Riz... Rigy1Rim ... Rig)(Rim - Ri 1) - - - (Rom ... Rog) =
=(Ri2... Rim)(Rm—1,m) Rm—2,mRm—2m—-1) ... (Ram...Ra3) =
=(Ria...Rim)R (ug, ..., up),

and hence, holds. ([l

Next we discuss certain specializations of R(u1, ..., Um).
Proposition 6.3. If u; —u;41 =1 foralli=1,...,m —1, then
R(uy,ug, ..., um) = Ap.

Remark 6.3. In fact, if u; —u;41 = —1 for all ¢, then R(uq, ..., upm)

= H,,, where H,, is the symmetrizer (but

we will not need this fact). Moreover, both identities are particular cases of the so-called fusion procedure.

Lemma 6.4. For any m > 1 and any commuting indeterminates u and v

1
Am,Rom(U7’U7m+1)...R01(U7’U):Am, (1H(P01++P0m))

Simialarly,

1
ROl(U_U)...ROm(U_U—m+1)Am: (1_“(P01++P0m))14m

Proof. We have

1
AmROm(U_U—m+1)...R01(u—U):Am <1—

1
p0m>...(1_
u—v—m-+1 U —

P()l) .
v

Now observe that for any distinct indices iy, ...,is € {1,...,m} one has

AmPO,i1 “ e PO,/L'S = (71)571Ampo711 .
Therefore,
AmRom(u—v—m+1)...Rp1(u—v) = Z (=1)° APy Py, =

mA0m -0 = (u—v—m—l—il)...(u—v—m—i—is) m4L 0,4y -+ - 40,1
1<i,<...<i1<m
1
" 1<;m (W—v—m+i1)... (u—v—m+i,) ™"
1<, <...<i1<m
= Am(]. - 041P01 e Oémpom),

where the coefficients «; are as follows:

1
ai:u—v—m—i—i Z

1<s<m
1<is<...<ia<d

Thus,

(u—v—m+ig)...

(u—v—m+is)

1 1 1 1
- | 1+ - 1T+ = .
uU—v—m-+1 u—v—m+i—1 u—v u—v

1
AmROm(u—v—m+1)...R01(u—1}):Am (1_u—’U(P01++P0m))7

as claimed. The second identity can be proved in a simlar way. Alternatively, one can notice that the left-hand

side expressions of both identites are both just R(u,v,v —1,...,
with A,,

Later we will need the explicit formula for another specialization of R(uq, ...,

the commutativity of Bethe subalgebras (see Subsection below).

Let k and [ be positive integers. Consider the following specialization of uq, . ..

(6.4)
Now define

w=u—i+1,ie{l,...

Ak = R(ul,...7uk), A; =

v—m+ 1) while Pp; + ...

R(uk+17 AR

+ Py, commutes
O

Um,). 1t will be used for proving

s Uk y U415+ -+ 5 UR41-

kY, upry=v—g+1, je{1,...,1}.

uk+l)'
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In view of Propositionthese operators are the antisymmetrizers that correspond to sets of indices {1,...,k}
and {k+1,...,k+1}, respectively. Observe that AyA] = AjA;.

Proposition 6.5. Define the operator
min{k,l}

~ (—=1)Pp!
R = P; T i
(wv)= Y w—v—ktl).. (u—v—Fktp) 1<i1<2:<i . iv ki1 ip K+ ip

p=0
1<51 <. <Gp <l

Then, under the specialization (6.4) we have
R(ul, ce ,uk_H) = E(U, U)AkAg = AkAER(U, ’U).

Remark 6.4. The exact form of the operator E(u, v) is not important here (note however that for k =1 =1
this is just the Yang R-matrix). The important obervation here is that R(u,v) and AxA] commute and their
product equals R(uy, ..., Ugt)-
Proof. The proof is a bit more complicated version of the argument that was used in Proposition [6.3] Firstly,
recall that
R(ua, ... upgr) = (Riri—1,640) (Rrgi—2, ki Ripi—2,641-1) - (Rt - Riz) =
= R(uk+1, N ,ukH)(Rk’kH N Rk,k+1)(kal,k+l N kal,k) N (RL]HJ N RLQ)
= R(uk+17 e 7uk+l)(Rk,k+l PN Rk,k+1) e (Rl,lc+l e Rl,kﬁ»l)(kal,k:) e (Rl,k N R12> =

= R(uk+1,---> Ukt1) (Ri ot - - Rickt1) - - - (R ott - - - R1 1) R(ua, ug, . .. ug).
Now we apply ! times the identity and obtain
R(ui, ..., upt1) = R(weg1, - s hrt) (Rifott - - Rijot1) - -« (Rt - - - Rap1)R(ur, ug, .. ug) =
= (Rip+1-- - Rigor) - (Rigt1 - Riprt) R(Upg1, - Upgr) R(ur, ug, ... ug) =

= (Rikt1- - Rirt) - (Rigs1-.. Rigyr) A Ay =
= (Rrpt1---Rigt1) - (Rigtt - Rapr1) A Al
Using the other formula for R(uq,...,ugy;) one can check similarly that
R(ui,...,upy1) = (Rio- .. Rigqt) - (Repi—2kv1-1) (Rrgpi—2 k-1 Revi—1,641) =
= ARA|(Ry gt Rijyr) - (Rihrt - Ripy1) =
= AR Aj(Ry g1+ Rijtt) - - (Rigt1 - - - Ri ot 1)

Now we prove that R(u1,...,ur1) = R(u,v)ArAj]. The second identity is completely analogous.
Indeed, applying Lemma [6.4] several times we obtain:

R(ul, e ,uk_H) = (Rk,k+1 - R17k+1) - (Rk,k+l e Rl,k—i—l)AkA; =

= (Rrk+1---Rigy1) o (Rr k-1 B1gyi-1) <1 - ﬁ(ﬂ,kﬂ +...+ Pk,k+1)> ARA) =
— (Rt Rigin) oo (Rigior - Rupsro1)Ar (1 _ m(a,kﬂ S Pk,kﬂ)) A =
= Ay (1 — ﬁ(ﬂﬂl + ...+ PMH)) (1 — ﬁ(ﬂ,kﬂ + ...+ PMH)) Aj
= (1 - ﬁ(Pl,kH +...+ Pk,k+l)> (1 - ﬁ(Pl,kJrl +.+ Pk,k+1)) AjAg.

Observe that for any distinct indices ji,...,75s € {1,...,1} and any i € {1,...,k} we have
Pijiir - P Al = (=171 Py, Al
Besides that, if i1 # i and j; # jo, then
Pi, ity Piy ket jn Al AR = Piy ket gy Piy ity A A
Using these formulas one obtains that

R(uy, ... upq1) = ZP! : Z ar,g - Py kg - Piy ks

p>0 1<iy <...<ip<k
1551 <...<jp<l

for certain coefficients «y, y, where I = {i1,...,ip} and J = {j1,...,jp}. Here, of course, p < min{k,!} and
the factor p! is due to permutations of 41,...,4,. Note that as ; is the sum of products (—1)%(u —v — k +
bi)"t...(u—v—k+0bs)"! over all sequences {(a;,b;)};_; which satisfy the following conditions:

e aj,...,as €{1,...,k};
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e l>by>...>bs,>1;
e as aset, {a1,...,as} coincides with I = {i1,...,i,};
o for each 1 < ¢ < p the last » which satisfies a, = ¢, also satisfies b, = j,.

It remains to compute oy, ;. The observations above imply that for given I = {i1,...,4,} and J = {j1,...,7p}
the corresponding coefficient oy, ; equals

nt 1 1 -1
= 1+ —+... . X
ars = 1 okt T U e—ktg ) u—v—k+i

j=1
p times
Jj2—1
1 1 -1
X H 14 ————+ ...+ - . — X
i u—v—Fk+j u—v—Fk+j u—v—k+jo

p—1 times

Jp—1
1 -1
1 - -
X. H ( +uvk+j> u—v—Fk+jp

J=jp-1+1
.jP jP
= (=07 J] w=v—k+)][[w—v—k+j)" =
Jj=p+1 Jj=1

) -1y
(u—v—k+1)...(u—v—k+p)

Comparing this with the definition of R(u,v) the claim follows. O

6.3. Ternary relation and the Yangian. Consider an n x n matrix T'(u) defined as follows:

T(U) = Z tw(u) (24 €ij, where t”(u) = 51']' + UilEij € U(g[n)
ij=1
Proposition 6.6 (Ternary relation).
(6.5) R(u — v)T (u) Tz (v) = To(v)Ty (u)R(u — v).

1

Remark 6.5. In fact, this ternary relation (or rather (6.6 below) gives precisely the relations for {t;;(u)}7;
that define the Yangian algebra Y (gl,,). Our matrix T'(u) is the image of the corresponding matrix for Y (gl
under the so-called evaluation homomorphism ev,: Y (gl,,) — U(gl,) which is defined as ev,(t;;(u)) = d;;
uflEij.

Proof. Note that both sides are elements of the algebra U(gl,,) @ End C" ® End C". Therefore, in order to check
this relation it suffices to check that their actions on all basis vectors e; ® e;. The left-hand side then yields

+L£

n n
1
2 1tij(u)tkl( )®el®ekfiv kg 1t1] w)tp(v) ® e ® ey,
i,k= 7,

and the right-hand side gives

n

1
Ztkz ®€z®6k—m2tkj tu(u) ®@e; @ eg.

i,k=1 i,k=1
Thus, it remains to verify that

(6.6) [tij(u), tra(v)] =

Indeed, we have

1

u—v

(trj(w)tu(v) — tij(v)ta(u)).

1 1
[tij(w), tr(v)] = [0ij + u ' Eij, 60 + v " Eyy] = %[EijaEkl] = %(@kEu — 01 Eyj),

and
tkj (u)til(v) — tkj (u)til(v) = (5kj + uilEkj)(éil + ”UflEil) — (5]” + UﬁlEkj)((Sil + UilEil) =

1
= (07 —uT )0k B — 0uBrj) = —(u—v)(0k; B — 0 ),
and follows. (I
We need the following generalization of ternary relation:

Proposition 6.7. For any m > 2 commuting indeterminates uy, ..., Un
R(ur, .y ) T3 (1) <« Ton (1) = Ton () - Ty () R, ).
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Proof. To simplify the notation denote T; = T;(u;). We induct on m, the base case m = 2 being just the ternary
relation (6.5). For m > 3 note that by assumption and (6.2)) we have

R(uy,...,um)Ty ... Ty = Ria ... Ry R (ua, ..., um)ThTo ... Ty =
= Ris... Ry iR (u2,...,um)To. .. Ty
= Ris...RimTi T ... TR (us, .. ., ).

Applying ternary relations Ry;T1T; = T;T1 Ry; for i = 2,...,m we get
R(uy,...,um)Ty ... Ty = (Ri2... Ry T Ty .. . To) R (ug, ..., up) =
= Ris... Rim AT TRy Tt .. ToR (uss . . ) =
=Tm(Ri2... R 1T\ T—1... To) Ry m R (ug, ... upy) =
=Tm...Tix1(Riz.. . Ry;TAT . . To)Ryip1 .. Ry R (ugy ooy uy) =
=Ty .. . TsTyRua ... Ry R (g, . .. i) =
=T, ... T R(ur, . . ., um),

which completes the inductive step. O

6.4. Bethe subalgebras. Define the trace on (End C")®™ as the linear map tr,, that acts on basis elements
by

i (€ijy @ - @ €ij) = Oirgy - Oijin-
Observe that if we view A € (EndC")® as an element of End (C™)®™ then tr,,(A) is indeed the trace of the
operator A acting on (C™)®™. We extend tr,, to a map tr,,: A® (End C")®™ — A where A is an arbitrary

non-commutative algebra:
trm(a®ei1j1®...®eimjm):5iljl...5 a, ac A

We need some properties of the trace map.

Lemma 6.8 (Cyclicity property). For any A € A® (EndC")®™ and B € 1 ® (End C")®™ we have

(6.7) tr, AB = tr,,, BA.

Proof. It suffices to check the identity when A = a®e;,;, ®...®e€;,,5, and B=1Qek,;, ®...Rex,,1,,. Indeed,
in this case we have tr,, AB = trp, BA=a"0;,k,0i11, - -0}k Oirnlyn- O
Lemma 6.9. For any positive integer k < n and any n x n matrices CV ... C*¥) whose entries belong to a

possible non-commutative algebra we have
tr, 4,C O = (n— k)t A0 O,

Proof. For each 1 <1 <k we let c = > c(l) ® e;5. Note that for any £ < m < n we have

i.j Cij
n
1 k 1 k
AmC£ ) ... Cli ) — E E Sgn(o)cgvzl)jl .. Cl(-a()k)jk “Cijy @ @ik @ Cipyrigepny D @ Cipig (-

i1yemrim=10EG,,
Jis--dk=1

Taking the traces of both sides gives

1 k 1 k
tro, AmC'f ). C’,i ) = Z Z sgn(o)cgazl)il .. .C’EU()k)ik i rioersy + Oty -

Observe that any m-tuple (iq,...,%y,) € [n]™ which contains equal entries the corresponding summand in the
expression above vanishes. Thus,
(1) (k) _ (1) (k) _
try, AnCy7 ... CL7 = Z Z sgn(a)cia(l)i1 e Citi 5'Lk+1io(k+1) .. -5imia<m) =

(15 stm )E[N] 0ES

_ (1) (k) _
= Z Z sgn(a)ci”(l)i1 e Cit, T

(i1, im)E[]  0EG,
a(j)=3, k<j<m

(n—k)! ) .
N m Z Z Sgn(T)ch()lm T CET()k)ik ’
" (i1semyin) E[N]E TESK
Applying this formula for m = n and m = k we get the required identity. 0

Consider the elements 73 (u) defined as follows:

1
Tk(u) = E try Ale(u) .. Tk(u —k+ 1)
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Proposition 6.10. All coefficients of the series T1(u), ..., T,(u) commute.

Proof. In order to prove the commutativity it suffices to verify that 74 (u)7(v) = 7 (v)7(u) for all k,I. Note
that this is equivalent to the equality

tri ATy (w) .o Te(u—k+1) ATy (v) - . Ty (v—141) = trgy AjTer1(v) .. Ty (v=1+1) ATy (u) . .. Ty (u—k+1).
To check this equality we start with relation in k + [ variables
R(uyy .. yup)Ti(ur) oo Tor(uppt) = Thogt(uggr) - - T (ur)R(ug, - ooy ugy)
and then specialize variables {u;} as in
u=u—t+1 upp;=v—J5+1, 1< <k 1<5< 1

For brevity we set T, = T,(u,). Then, Lemma implies

R(u, ) AR ATy .. TpToyr oo Topr = Togt - Togr Tp - .. TV A Ap R(u, ),
and applying generalized ternary relations for k and [ parameters gives

R(u, 0) ATy .. T AlTrr .. Topr = AlThi - .. Topt AkTy . .. T R(u, v).

Finally, since E(u,v) is invertible, we can multiply by R(u,v)! on th right and take the trace. Using the
cyclicity property of the trace we get

triy; AgTh - .. Tk:A;TkJrl v Ty = trg4 E(u, ’U)Ale ce. TkA;Tk+1 . TkHR(m ’U)_l
= trpq Ang-i—l v T ATy T,
which proves the required identity. O
Lemma 6.11. For any complex n x n matriz C the matriz C - T'(u) also satisfies the ternary relation (6.5)).

Corollary 6.12. For any complexr n x n matriz C' all coefficients of the series

Tk(u,C) = ltrkAkCl...Cle(u)...Tk(u— k+ ].)

E!
commute.
Proof. The ternary relation (6.5) still holds if we replace the matrix T'(u) with C - T'(u). Therefore, we can
repeat the proof of Proposition to show the commutativity of 7 (u, C). O

Corollary 6.13. For any complexr n X n matriz C all coefficients of the series
1
or(u,C) = ] tr, AT (w) ... Te(u —k+1)Cryq ... Cp,
commute.

Proof. Note that the elements oy (u, C') depend polynomially on the entries of C. Hence, it suffices to check the
commutativity for invertible n x n matrix C. In this case we have

1
or(u,C) = ﬁtrnAnTl(u)...Tk(ukarl)CkH...C’n =

%trn A, Cy . CROT Ty (u) ... O T (u — k4 1) =

1 det(C) - tr,, A, Cy Ty (u) ... O " T (u — k + 1) =

n!
_ |
_n n|k)' det(C) - trg AgCy ' T (u) ... O ' T (u — k + 1) =
|. — k)
- wdem) r(u, O

since 4,C1 ...C, = det(C)A,. Therefore, o1 (u,C) is a non-zero multiple of 7 (u, C~') and the statement now
follows from Corollary O

In calculations we also use alternative formulas for elements 75 (u, C) and oy (u, C).

Lemma 6.14. In the notation of Corollaries[6.19 and[6.13 we have
1
(68) Tk(u, C) = y try ApCh ... C’ka(u —k+ 1) R Tl(u),

(6.9) or(u,C) = %trn AT(u—k+1)... Ty (w)Cxyr ... Ch.
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Proof. From the proofs of the above corollaries we have
1
(’LL C) trkAkClTl( ) Cka(u—k—i—l)
Since the matrix C - T'(u) satisfies and hence by ([6.7)) we have

1 1
Tk(u,C) = Htrk Cka(U —k+ ].) .. ClTl(u)Ak = atrk ACq . ..Cka('LL —k+ 1) . Tl(u)

by the cyclicity property of the try. This proves the first formula. To prove the second formula we again conside
the case when C' is invertible. Then, as in the proof of Corollary we have

— |
oulu,0) = n,k)' det(C) - trp ACy ' Ti(w) ... Cp ' Th(u — k + 1) =
— |
1
1 —_ —
= amrnAnCl...Cn(Ckl...Cl DWho(u—k+1)... Ty (u) =
1

by the first formula and the fact that 4,,C; ...C,, = det(C)A,. This concludes the proof of the lemma. [l

6.5. Application to Capelli’s identities. Let us show how the R-matrix formalism can be used in order to
prove variants of the Capelli identity.

Lemma 6.15. For any k-tuples I = (i1,...,ix) and J = (j1,...,jk) in [n]*¥ we have the following identity in
U(gl,)[z]):

I‘det[EiajB + (Z + o — 1)67:aj5](l§,6:1 = Cdet[EiajB + (Z + k— a)éiajg]f;ﬁ:l.
In particular, these expressions are skew-symmetric in i1, ...,i, and ji,...,jk, respectively.

Proof. We start with the ternary relation for m = k (see Proposition :
Ale(u) .. .Tk(u —k + 1) == Tk(u —k + 1) . .Tl(u)Ak.
Now let us apply both sides as operators on (C")®* to a vector ej, ®...ej,. The left-hand side gives

n

(ArTi(u) .. . Te(u—k+1))(ej, ®...e5,) = Z t(u) .ty (u—k+1)- Agle, ®...e,) =
lyolg=1

= Z Z sgn(o)ty, g, (w) .ty (u—k+1) e, ®...Qe,, =

l1,..,lk=10€EG

= Z Z sgn(o)t; (1)]1( u).. tlry(k).]k( —k+1)-e, ®...e.

l1,..,lk=10€GK

In particular, the coefficient in front of ¢;; ® ... ® e;, equals

Z Sgn(o—)tin(l)jl (u) cee tia(k)jk (u —k+ 1) = (uﬁ)il Z Sgn(a) (Eio'(p)jp + (u —p+ 1)5ia(p)jp) =
g€ESy gESy p=1,...,k

= (uﬁ)_ -cdet[E;, j, + (u —a + 1)5iajﬁ]§,ﬁ:1-
On the other hand,

(Tk<u_k+ 1)' ( )Ak?)(e.]l '®ejk) = Z Sgn(a)(Tk(u_k+ 1)"'T1(u))(ejo(1) ®"'®e.ja(k)) =
a'EGk

Z Z sgn tlw (1)( k+1)"'tlkig(k)(u) e ®...®ep.

ceSy lq,..., =1

Hence, the coefficient in front of e;, ® ... ® e;, equals

Z Sgn(a)tilja(l)( —k+ 1) : lkja(k) (u> = (uﬁ)_l Z sgn( ) (Eipjo'(p) + (u —k+ p)(sipjo'(p)) =
ceSy ceSy p=1,....,k
= (’LLE) I‘dCt[EiajB + (’LL —k+ 04)57;0‘]‘[3}];”3:1.

Combining everything together, we obtain

rdet[Eiajﬁ + (U —k + a)éiajg]];,ﬁzl = cdet[Eiajﬁ + ('LL — o+ 1)(51'0(]‘[3]275:1.
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Substituting w = z + k — 1 finishes the proof of the lemma. O

Remark 6.6. In particular, by plugging z = 0 into the lemma we obtain another proof of Corollary

7. COMMUTATIVITY OF THE BIG ALGEBRA
The aim of this section is to prove the following crucial result.
Theorem 7.1. The algebra B(P(n,r)) is a commutative.

Remark 7.1. Known proofs of this fact involve quite non-trivial constructions such as Feigin-Frenkel center,
Segal-Sugawara vectors and opers. The main advantage of our approach is that it is essentially elementary and
relies on direct calculations and known facts about the representation theory of classical Lie algebras.

Proof. In view of Corollary it suffices to check that the operators Fj ; commute. By (3.7)) and (5.3))

FP7Q(Y) = Z sgn <§ J ) det 1/11J1 L(Hszz)'
none() n
B 12 ()
LUly=J,UJs
Note that in view of Proposition [3:4 we only need to check the commutativity for Y € b, i.e. for diagonal
matrices. For Y = diag(z,..., 2 ) we have

Z detY[[ HJJ Z sz HJJ
IG( ) ]) i€l

Je(m™) Je(w)

INJ=9 INJ=

Notice that by Lemma for the diagonal matrix C' = diag(z1, ..., z,) we have
nl-or(u,C) =tr, AyTe(u—k+1)... Ty (u)Ciy1...Cp =

n

Z Z Sgn(a)t’iliau)( —k+1).. 1kla(k)( u) H 5ijio(j)zij =

i1yensin CEG,, j=k+1
- Z Z Sg(0) iy, (U — K+ 1) i ( H s
(il,..A,ik)E[n]ﬁGGC‘:‘)k iele
= k! Z Z Sgn(a)tilia(l)( —k+1).. 1kla(k) H 2=
i1<...<i cESy iele
=kl (ufu—1)...(u—k+1))" Z M (k—1—w) sz,
re(t) icle
where by I¢ we denote the complement of I = {4,...,4x} in [n]. Here we used that the expression
Z Sgn(O—)tilio‘(l)( —k+ 1) . lkla(k) (u) = (uﬁ)_l : rdet[Eiaiﬁ + (U’ —k+ a)éiaiﬁ]z,ﬁzl
gES
is skew-symmetric in 41, ..., 4 (see Lemma [6.15)).
Thus,
u
I (—1)"P . 11— I =
oo ) o —p 10 = Y M- [[ -
Ie(n p) iele
n—p n—p
= 2 D (yrrtemt ) M [[m = 3 (0 et Y T [[
re( ) =0 Ke(l) iele £=0 7e(?) jeJ
Ke()
JNK=2
Applying the map L, we obtain
n—p
nl- (=0 () Lo p—1—u,0) = 3 (~1)" Pt F oY),
n—p £=0 ’

Now Corollary [6.13] implies that for any 0 < p1,pa < n we have the identity

n—pi n—p2
lz (~)rP Tt (Y), Y (SR Rt B (V)| =0,
5120 2220
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Finally, polynomials {ufvl} ;>0 are linearly independent and hence, [F},, 4, (Y), Fp, .4, (Y)] = 0for all p1, pa, g1, go
O

Remark 7.2. In the course of the proof we actually showed that (see 77?)

nl- (—1)"_p< ! ) L(on—p(n—p—1-u,C)) = > (-1)" P~ ut==L F, ((Y),

n—p

=0
L(on_p(v,Y)) = Z(v(v —1) .. (v—L+ 1) ().
£=0

In fact, the elements of Bethe algebra as functions in C' € End(C™) can be regarded as elements of Kirillov
algebra in the sense of the following lemma.

Lemma 7.2. The coefficients of the power series C' — L(oy(u, CT)) belong to € (P(n,r)).

Proof. Observe that for any g € GL,, the element A, commutes with g1g>...g, in End(C™)®". Hence, by the
cyclicity property of the trace,

n!- oy (u, Ad(9)(C)) = n! - ox(u, gCg™") = trn AnTi(u) ... Tr(u — k 4+ 1)gk11Cki105 L - - 9nCngr ' =
=trp Angrt1 .- gnTi(w) . Te(u—k+ 1)Chyq .. C’nng g_1
=tr, An(gl...gn)(gfl...g;l)Tl(u)...Tk(u—k—i— 1)Clyq .- Cnng gt =
:trnAngfl...g,;lTl(u)...Tk(u— E+1)Ciky1...Cngr...gx =
= tr, AngflTl (w)gs - .g;lTk(u —k+1)gpCry1...Ch.
On the other hand, for any h € GL,, we have

(id )T (v)(id ®@h) ™! = Z ti;(v) @ Ad(h)(es;) Z Z [Ad(h)(eij)]rr - (0i; + v Eij) ®@ ey =

i,j=1 k,=114,j=1
= Z ( Z [Ad(h)(eij)]kL - ij) ® exr + Z v1< Z Ad(h)(eiz)]k Ew> ® ex =
k=1 \i,j=1 k=1 ij=1

n

> O+ v AR (Br) @ e = Y AW (tr(v)) @ ep,
k=1 k=1

where the last equality follows from

n

Z [Ad(R)(€i)]k - Eij = Z tr(Ad(h)(ei;) ew) - Eij = Z tr(ei; Ad(h™")(ew)) - Eij =

n

tr(Ad(R")(ext) €50) - Bij = Y [Ad(RT) (e))ij - Biy = Ad(D")(Bra).

Therefore, (id ®h)T(v)(id ®h) =t = (Ad(hT) ®id)(T'(v)). It follows that for any g € GL,, we have
a1 (u, Ad(9)(C)) = Ad ((97) ") (on(u, ©)).
If we denote ®(u, C) = L(ox(u,CT)), then for any g € GL,, we obtain
®(u, Ad(g)(C)) = L(Ad(g)(0%(u, C))) = L(9)®(u, C)L(g) ",

which is precisely the condition (3.2)). Hence, all coefficients of the u-power series ®(u,C) = L(ox(u,CT))
belong to €' (P(n,r)). O

=

&
Il
—_

I
:M:

8. BIG ALGEBRA IN THE MULTIPLICITY FREE CASE

The goal of this section is to show that big algebra coincides with the medium algebra in the multiplicity
free case.

Proposition 8.1. Assume that r = 1. Then, the big algebra B(P(n,r)) coincides with the medium algebra
M (P(n,r)).

Proof. Indeed, we just note that in the case » = 1 all operators Fj ; with ¢ > 1 are zero. Therefore, both
algebras 4 (P(n,r)) and B(P(n,r)) are generated by operators {F,o,Fp1 : p < n}. Hence, #(P(n,r)) =
B(P(n,r)). O
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Remark 8.1. T. Hausel proves that medium algebra .# (V') is the center of Kirillov algebra ¢ (V') in the case
of irreducible V' (see [2], Theorem 1.1]). On the other hand, N. Rozhkovskaya shows that ¢’ (V') is commutative
if and only if V is weight multiplicity free (see [I1, Theorem 4.1]). Since in case r = 1 the ring P(r,n) is
isomorphic to S(C") as a gl,-representation, its decomposition into irreducibles is just @,~,S%(C"). Note
that all these summands are weight mutliplicity-free. Thus, taking into account Proposition [3.7 one can view
Proposition [8.1] as a combination of the results by Hausel and Rozhkovskaya.

9. MISCELLANEOUS FACTS

9.1. About restriction to Cartan subalgebra. Note that Kirillov algebra € (V) is not in general commu-
tative. However, if V' is weight multiplicity free, then it is the case. This is an immediate consequence of the
following fact.

Proposition 9.1. Let V be a weight mtliplicity free representation of g = gl,,. Then, for any A € €(V) and
any x € b the operator A(x) € EndV is diagonal in the weight basis of V.

Remark 9.1. Note that since V is weight multiplicity free, the elements of weight basis of V' are determined
uniquely up to multiplication by a non-zero scalar.

9.2. Formula for D-operator. Let m be a positive integer. Consider V =V (mw;) = S™(C"), i.e. the m-th
symmetric power of the standard representation of gl,,. Then, V is weight multiplicity free and its weights are
just n-tuples 1 = (p1, ..., pn), where p; € Z>o and Y ;| p; = m.

Our aim is to obtain a description of big algebra A(S™(C™)) in terms of generators and relations. Besides
that, we would like to get a simple formula for D-operator.

Consider the ring DI,, = C[z1,..., 20, Y1, .. ,Yn|S", where &,, acts diagonally on variables x;,y;. It is known
[13, Ch. II, §A.3] that this ring is generated by the so-called polarized power sums

n

_ E T,

pr,s - xi yz
i=1

Note that these generators are not algebraically independent unlike the case.
Let DI} be the subring of DI,, generated by ps o and p 1 for all s > 0.

Proposition 9.2. Big algebra B(S™(C")) is isomorphic to a certain quotient of the ring DI-. Namely,
B(S™(C™)) is isomorphic to the image of DI} under the map

D e

pEmooy

T

where the ring homomorphism ev,: DI} — S(h*) @ End V,,(mwy) sends p, s with 0 < s <1 to > | psti. Here
we identify S(h*) with C[ty,...,t,] and also view B(S™(C™)) as a subalgebra inside S(h*) ® Endy S™(C™).

Denote by A the ring of symmetric functions in infinitely many variables. For f € A we use the notation
f[A4] for the plethystic substitution, where A is a certain expression in x;,y;. We treat x; as variables and y; as
constants.

Proposition 9.3. For any f,g € A define

0x1 oxy,

)g[xlyl + .+ Ty + (T —x5)] = gy + -+ Ty
Z; —LUj '

D(fly1 + -+ yalglr1y1 + . + Toya]) = <y18 +...+ yna> (fler + ..+ zalglziys + .+ zpya])+

AT B N (eS|
it
The map D induces the D-operator on ZB(S™(C™)).
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