
CLASSICAL AND QUANTUM FAMILY ALGEBRAS OF THE FUNDAMENTAL

REPRESENTATIONS OF gln

NHOK TKHAI SHON NGO

Abstract. In this note we study the so called family algebras of the fundamental irreducible representations

of gln. We describe certain distiguished elements of these algebras, called M -elements.

1. Introduction

1.1. Classical family algebras. Alexander Kirillov in his papers [4] and [5] introduced a new class of algebras
Cµ(g) (the so called classical family algebras) which are related to irreducible representations of Lie algebras.
These algebras proved to be useful in different problems of representation theory and mathematical physics.

Let G be a reductive Lie group and let g be its Lie algebra. Assume that B : g × g → C is an invariant
non-degenerate bilinear form on g. For example, if g is semisimple, then one can choose B to be the Killing
form.

Let (πµ, Vµ) be the irreducible representation of g with the highest weight µ of dimension d(µ) = dimVµ.
Observe that EndVµ possesses a natural structure of a G-module. Indeed, the acion of G on EndVµ is given
by the formula

g ·A = πµ(g)Aπµ(g)
−1.

Besides that, the adjoint action Ad of the group G on the corresponding Lie algebra g gives rise to the G-action
on S(g). Thus, EndVµ ⊗ S(g) is also a G-module. Finally, define the algebra Cµ as

(1.1) Cµ(g) = (EndVµ ⊗ S(g))G.

The algebra Cµ(g) is called the clasical family algebra (see [4, 5]).
Since B is an invariant non-degenerate bilinear form on g, it produces a canonical isomorphism of G-modules

g and g∗. Hence, there is a corresponding isomorphism of G-modules S(g) ≃ S(g∗). Thus, one can think of
Cµ(g) as of G-equivariant polynomial maps from g to EndVµ. In other words, one can regard Cµ(g) as a subset

of d(µ)× d(µ) matrices A = {Aij}d(µ)i,j=1, whose entries Aij are polynomial functions on g, and which satisfy the
equality

(1.2) πµ(g)Aπµ(g)
−1 = A ◦Ad(g) for all g ∈ G.

Here A ◦Ad(g) is a d(µ)× d(µ) matrix whose (i, j)-entry equals Aij ◦Ad(g).

1.2. Quantum family algebras. Recall that the universal enveloping algebra U(g) of the Lie algebra g possess
a natural G-action. Thus, one can consider the quantum analogues of classical family algebras by taking the
universal enveloping algebra U(g) instead of symmetric algebra S(g). In other words, we define the algebra
Qµ(g) as (see [5])

(1.3) Qµ(g) = (EndVµ ⊗ U(g))G.

We call Qµ(g) the quantum family algebra. Similarly, Qµ(g) can be described as an algebra consisting of
d(µ)× d(µ) matrices {Aij}, whose entries belong to U(g), and which satisfy the identity

(1.4) πµ(g)
−1Aπµ(g) = Ad(g)(A).

Here Ad(g) is the entry-wise adjoint action of G on Mat(d(µ)× d(µ), U(g)).

Remark 1.1. Note that condition (1.4) in the quantum case differs from (1.2) in the classical case. The reason
is that the elements Cµ(g) can be identified with certain matrix-valued polynomial maps on g, whereas there is
no similar description of Qµ(g).

We also refer to family algebras, both classical and quantum, as to Kirillov algebras.

1.3. M-elements and their characterstic identities. Here we recall several constructions from the theory
of family algebras (see [4] and [5]).
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1.3.1. Classical case. Suppose that X1, . . . , Xm and X1, . . . , Xm are dual bases of g with respect to B(·, ·). For
any A ∈ Cµ(g) define

D(A) =

m∑
i=1

πµ(Xi) ·
∂A

∂Xi
.

One can check that this definition is actually independent of the choice of basis X1, . . . , Xm.

Remark 1.2. Here ∂A
∂Xi

means the derivative of A (it is a polynomial matrix-valued function on g) in the
direction of Xi ∈ g.

The following fact was proved in [13, Proposition 5.2] (see also [5, Theorem M]).

Proposition 1.1. D is a linear operator acting on Cµ(g).

Note that the algebra of g-invariant polynomials on g naturally embeds in Cµ(g) as subalgebra of scalar
matrices. Thus, the proposition above implies that for any g-invariant polynomial P ∈ C[g]g, the element D(P )
belongs to Cµ(g). We denote MP = D(P ) and call MP as M -element that corresponds to P ∈ C[g]g.

Example 1.1. One important special case of this construction is when P = C =
∑

iXiX
i ∈ C[g]g is a quadratic

invariant polynomial, i.e. the quadratic Casimir element. Then we have

MC =

n∑
i=1

πµ(Xi) ·Xi.

For example, consider the case when g = gln and µ = ω1 (see Section 2 for the notations), i.e. when πµ is the
standard vector representation of gln. We have C =

∑n
i,j=1 xijxji and hence

MC =


x11 x21 . . . xn1
x12 x22 . . . xn2
. . . . . . . . . . . .
x1n x2n . . . xnn

 .

1.3.2. Quantum case. In the quantum case we do not have differentiation, but we can use the comultiplication
structure on U(g).

Let ∆: U(g) → U(g)× U(g) be the algebra homomorphism defined on g as

∆(X) = X ⊗ 1 + 1⊗X for any X ∈ g.

Following Kirillov we define the homomorphism δ : U(g) → Mat(d(µ) × d(µ), U(g)) as the composition δ =
(πµ ⊗ id) ◦∆. In particular, for X ∈ g we have

δ(X) = πλ(X)⊗ 1 + 1⊗X.

Denote by Z(U(g)) the center of U(g). Now for any A ∈ Z(U(g)) define the element MA as

MA =
1

2

(
δ(A)− πµ(A)⊗ 1− 1⊗A

)
.

Since the map δ is G-equivariant, the element MA belongs to Qµ(A). We proved the following fact.

Proposition 1.2. For any A ∈ Z(U(g)) the element MA belongs to Qµ(g).

As in the classical case, we also call MA as M -element which corresponds to A ∈ Z(U(g)).

Example 1.2. Similar to the classical case assume that A ∈ Z(U(g)) is the quadratic Casimir element, i.e.
C =

∑
iXiX

i ∈ Z(U(g)). Then, we have

MC =

m∑
i=1

πµ(Xi)⊗Xi.

Remark 1.3. Notice that this formula coincides with the corresponding formula in the classical case if we use
the identification of Cµ(g) with algebra of matrix-valued polynomial maps on g.

As in the first case, assume that g = gln and µ = ω1. Then, we have C =
∑n

i,j=1EijEji and

MC =


E11 E21 . . . En1

E12 E22 . . . En2

. . . . . . . . . . . .
E1n E2n . . . Enn

 .
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1.3.3. Characteristic identities forM -elements. It turns out thatM -elements satisfy certain identities of Cayley-
Hamilton type. Namely, the following statement holds.

Proposition 1.3. (a) For any P ∈ C[g]g there is a polynomial of degree d(µ) with coefficients in C[g]g which
annihilates MP ∈ Cµ(g).

(b) For any A ∈ Z(U(g)) there is a polynomial of degree d(µ) with coefficients in Z(U(g)) which annihilates
MA ∈ Qµ(g).

Observe that this fact is trivial in the classical case because we can simply take the characteristic polynomial
of MP . However, in the quantum this is far from trivial. Moreover, one do not expect the existence of Cayley-
Hamilton type identity for an arbitrary matrix with non-commuting entries.

1.4. Connections with algebraic geometry. It is known that the classical family algebra Cωk
(gln) which

corresponds to the k-th fundamental representation of gln is isomorphic to the GLn-equivariant cohomology
ring of Gr(k, n). Moreover, the similar fact holds for many other classical family algebras, e.g. for those
corresponding to minuscule (or weight multiplicity free) representations. This relation between classical family
algebras of minuscule representations and equivariant cohomology was discussed in [11, Section 6].

The quantum family algebras can be regarded as quantizations of classical ones. However, it is unclear if
there is any connection between quantum family algebras and, for example, quantum cohomology of algebraic
varieties.

1.5. Results. In this paper we are studying Kirillov algebras (both classical and quantum) for the special case
g = gln and µ = ωk. In other words, we study algebras that correspond to the fundamental representations of
gln, i.e. to the exterior powers of the standard representation of gln. These representations are minuscule, i.e.
they are weight multiplicity free (see [11]). It is known that for such representations the corresponding family
algebras are commutative (see [4, Theorem 1], [5, Theorem S], [10, Propositions 1 and 2] for more details).

1.5.1. Structure of Cωk
(gln). We describe the algebra Cωk

(gln) in terms of generators and relations and also
as a certain subalgebra of the polynomial algebra. Namely, we prove that Cωk

(gln) is isomorphic to the
Sk × Sn−k-invariant part of C[t1, . . . , tk, tk+1, . . . , tn]. The corresponding isomorphism is closely related to
the “diagonalization homomorphism” described in Subsection 3.4.

1.5.2. D-operator in Cωk
(gln). For any distinct elements i and j of the set {1, 2, . . . , n} denote by sij ∈ Sn

the transposition of elements i and j. Here Sn is the n-th symmetric group, i.e. the group of permutations of
the set {1, 2, . . . , n}. Then, one can define the following linear operator (the divided difference) on the algebra
C[t1, . . . , tn]:

∂ij(f) =
f − sijf

ti − tj
for all f ∈ C[t1, . . . , tn].

Here we use the following notation: for any σ ∈ Sn we denote (σf)(t1, . . . , tn) = f(tσ−1(1), . . . , tσ−1(n)).

Since Kirillov algebra Cωk
(gln) is isomorphic to C[t1, . . . , tk, tk+1, . . . , tn]

Sk×Sn−k we can define the action
of D-operator on the latter. It turns out that one has the following explicit formula:

(Df)(t1, . . . , tn) =

(
k∑

i=1

∂

∂ti

)
(f) +

∑
1≤i≤k

k+1≤j≤n

∂ij(f)

We prove this formula in Subsection 3.5. Our proof uses direct computations, explicit formulas of generators
and the diagonalization homomorphism.

1.5.3. Cayley-Hamilton identities for Casimir M -operator in Qωk
(gln). We find analogues of Cayley-Hamilton

idenities for Casimir M -operator in quantum family algebra. These can be seen as generalizations of the
well-known Capelli’s identities (see also [14] and references therein).

1.6. Contents. The present paper is organized as follows.
In Section 2 we fix the notation, revise the relevant information about reductive Lie algebras and their

universal enveloping algebras. We also discuss the fundamental representations of gln.
In Section 3 we discuss the classical case. We describe Cωk

(gln) in terms of generators and relations and prove
the explicit formula for D-operator We use this formula to obtain relations between M -elements of invariant
polynomials in C[gln].

In Section 4 we discuss the quantum case. We discuss general algorithm for finding the characteristic identity
for M -elements and obtain the explicit formulas in the case of quadratic Casimir element.

Finally, in Section 5 we discuss some open questions about classical and quantum family algebras.

1.7. Acknowledgements. This work was done during the rotation in Hausel research group at Institute of
Science and Technology Austria (ISTA) under the supervision of Tamás Hausel.
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2. Preliminaries for the case g = gln and µ = ωk

In this section we fix the notations and state several facts about the fundamental representations πωk
of the

Lie algebra gln.

2.1. General facts about complex reductive Lie algebras. Recall that for any complex reductive Lie
algebra one has the root space decomposition:

(2.1) g = h⊕
⊕
α∈R

gα,

where R is the associated root system of g. Denote by R+ (R−) the set of positive (negative) roots in R. Then,
we get the so called triangular decomposition of g:

(2.2) g = n− ⊕ h⊕ n+,

where h is the Cartan subalgebra and n± =
∑

α∈R±
gα are nilpotent subalgebras which correspond to posi-

tive and negative root spaces, respectively. This and the Poincare-Birkhoff-Witt theorem yield the following
decomposition of U(g):

(2.3) U(g) = n−U(g)⊕ U(h)⊕ U(g)n+.

In particular, one can define the projection of U(g) onto U(h). Since h is a Cartan subalgebra in g the
universal enveloping algebra U(h) is isomorphic to the symmetric algebra S(h). Thus, one can define a map
Γ: U(g) → S(h). This map is called the Harish-Chandra homomorphism.

Let ρ be the half-sum of all positive roots, i.e.

(2.4) ρ =
1

2

∑
α∈R+

α.

Recall that the twisted Weyl group W̃ is the Weyl group W of the root system R conjugated by the translation
by ρ in h∗. In other words,

W̃ = {τ−1
ρ ◦ w ◦ τρ : w ∈W},

where τρ : h
∗ → h∗ is the translation by ρ, i.e. τρ(λ) = λ+ ρ.

The map Γ is closely related to the center Z(U(g)) because of the following fact.

Theorem 2.1. The restriction of Γ to Z(U(g)) is an injective algebra homomorphism, whose image consists

of W̃ -invariant part of U(h) ≃ S(h).

For any λ ∈ h∗ we denote by χλ : Z(U(g)) → C the central character on Z(U(g)) that corresponds to a
weight λ ∈ h∗. Then, the Harish-Chandra map Γ satisfies the following property:

(2.5) Γ(A)(λ) = χλ(A)

for any A ∈ Z(U(g)) and λ ∈ h∗.
We refer the reader to [7, Chapter 7, 7.4] and [12, Chapter VI, 23.3] for more information about the Harish-

Chandra isomorphism.

2.2. Triangular decomposition of gln. We apply facts stated in Subsection 2.1 to the case g = gln.
Denote by {Eij}ni,j=1 the standard basis of gln consisting of matrix units. In particular, elements Eij satisfy

the relations

(2.6) [Eij , Ekl] = δjkEil − δliEkj .

We choose Cartan subalgebra h in gln to be the subalgebra of diagonal matrices, i.e.

h = span{Eii : 1 ≤ i ≤ n}

and choose positive roots in such a way that

(2.7) n− = span{Eij : i > j}, n+ = span{Eij : i < j}.

It is not difficult to show that in this case ρ ∈ h∗ acts on h as

(2.8) ρ

(
n∑

i=1

hiEii

)
=

n∑
i=1

n+ 1− 2i

2
· hi.

The Weyl group W in this case is isomorphic to the symmetric group Sn.
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2.3. Invariant form on gln. In case g = gln we choose form B to be B(X,Y ) = tr(XY ). It is clear that B is
an invariant non-degenerate bilinear form on g = gln. Denote by xij the coordinates on g that correspond to
basis {Eij}ni,j=1, i.e. xij ∈ g∗ such that for any X ∈ gln

X =

n∑
i,j=1

xij(X) · Eij ,

or equivalently

X =


x11(X) x12(X) . . . . . . x1n(X)
x21(X) x22(X) . . . . . . x2n(X)
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

xn1(X) xn2(X) . . . . . . xnn(X)

 .

Clearly, for any X,Y ∈ gln we have

B(X,Y ) =

n∑
i,j=1

xij(X)xji(Y ).

In particular, the basis of gln dual to {Eij}ni,j=1 with respect to B is {Eji}ni,j=1.

2.4. Notations and conventions. Fix positive integers n and k such that 0 ≤ k ≤ n. Let Ik be the set of all
k-element subsets of the set {1, 2, . . . , n}. It is clear that |Ik| =

(
n
k

)
. Let {e1, e2, . . . , en} be a standard basis of

V = Cn. For each I ∈ Ik, where I = {i1, . . . , ik} and i1 < . . . < ik, denote by eI the element ei1 ∧ . . . ∧ eik of

the k-th exterior power of V . Clearly, the elements {eI}I∈Ik
form a basis of

∧k
(V ).

Recall that if V is considered as a standard gln-module with the highest weight ω1, then Vωk
=
∧k

(V ) is a
simple gln-module with the highest weight ωk. The action of gln is given via the formula

(2.9) πωk
(X)(v1 ∧ v2 ∧ . . . ∧ vk) = (πω1

(X)v1) ∧ v2 ∧ . . . ∧ vk + . . .+ v1 ∧ v2 ∧ . . . ∧ (πω1
(X)vk)

for any X ∈ gln.
In particular, for matrix units {Eij}ni,j=1 of gln and basis {el}nl=1 we have

πω1
(Eij)el = δjlei =

{
ei, if j = l,

0, if j ̸= l.

Now define the coefficients εj,i(J, I) for any I, J ∈ Ik and i, j ∈ {1, 2, . . . , n} via the identity:

πωk
(Eij)eJ =

∑
I∈Ik

εj,i(J, I)eI .

One can check that the following statement holds.

Lemma 2.2. Let I, J ∈ Ik and suppose that

I = {i1, . . . , ik}, J = {j1, . . . , jk}, where i1 < . . . < ik, and j1 < . . . < jk.

Then, for any i, j ∈ {1, 2, . . . , n} the coefficient εi,j(I, J) can be found explicitly via the formula

(2.10) εj,i(J, I) =

{
(−1)m, if i ∈ I, j ∈ J and I \ {i} = J \ {j},

0, otherwise.

Here in the first case m is equal to the number of inversions in the permutation

j1, . . . , jr−1, i, jr+1, . . . , jk

of the sequence i1, . . . , ik, where the index r ∈ {1, 2, . . . , k} is such that jr = j.

Recall that the elements of Cωk
(gln) can be regarded as polynomial d(ωk) × d(ωk)-matrix-valued functions

on g (recall that we identify EndVωk
with the space of d(ωk)× d(ωk) matrices). Since elements of basis Vωk

are
enumerated by k-element subsets of {1, 2, . . . , n} we can parameterize matrix elements of A ∈ Cωk

(gln) by pairs
of elements of Ik.

2.5. Ordering on Ik. Define a natural ordering on Ik as follows: for any k-element subsets I = {i1, . . . , ik}
and J = {j1, . . . , jk}, where i1 < . . . < ik and j1 < . . . < jk, we say that I ⪯ J if either

i1 + . . .+ ik < j1 + . . .+ jk

or there exists s ≤ k such that

i1 + . . .+ ir ≤ j1 + . . .+ jr

for all r = 1, s with a strict inequality for r = s. We use the introduced ordering on Ik to enumerate vectors of
basis {eI}I∈Ik

. We identify each element EndVωk
with its d(ωk)× d(ωk) matrix in basis {eI}I∈Ik

.
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3. Classical case

3.1. Generators of Kirillov algebra. Recall that we identified Cωk
(gln) with GLn-equivariant polynomial

maps on gln. Thus, we can regard elements of Cωk
(gln) as matrices whose entries are polynomials in xij . Define

certain distinguished elements of Cωk
(gln) as follows: set

(3.1) Ym = πωk
(Xm) =

n∑
i,j=1

πωk
(Eij) · [Xm]ij .

Here X = {xij}ni,j=1 is regarded as gln-valued polynomial function on gln. We also put Y = Y1.
In particular, for any I, J ∈ Ik we have

[Ym]IJ =

n∑
i,j=1

εi,j(I, J) · [Xm]ij .

Lemma 3.1. For any positive integer m the elements Ym and tr(Ym) belong to Cωk
(gln).

Proof. This can be proved by checking directly the condition (1.2). □

We will show later that elements Ym and tr(Ym) generate the whole algebra Cωk
(gln) (see Proposition 3.4).

3.2. Equivariant cohomology of the complex Grassmannian. Consider the complex Grassmannian Gr(k, n)
of k-dimensional subspaces in a n-dimensional complex vector space. We will consider the GLn-equivariant co-
homology ring H∗

GLn
(Gr(k, n),C) of Gr(k, n) with complex coefficients. It is known that the GLn-equivariant

cohomology of the complex Grassmannian of k-planes in n-dimensional vector space has the following algebraic
presentation:

(3.2) H∗
GLn

(Gr(k, n),C) = C[p1, . . . , pk, q1, . . . , qn−k, a1, . . . , an]/coeffs(p(t)q(t)− a(t)),

where coeffs(p(t)q(t) − a(t)) is the ideal in C[p1, . . . , pk, q1, . . . , qn−k] generated by the coefficients of the poly-
nomial p(t)q(t)− a(t), where we define

p(t) = tk + p1t
k−1 + . . .+ pk, q(t) = tn−k + q1t

n−k−1 + . . .+ qn−k,

a(t) = tn + a1t
n−1 + . . .+ a1t+ a0.

In other words, the ideal I is generated by the elements

ar −
∑

i+j=r

piqj , r = 1, n.

In particular, the corresponding ring is commutative. It can be shown that as complex algebra it is isomorphic
to the polynomial algebra C[p1, . . . , pk, q1, . . . , qn−k].

The following isomorphism is proved in [8]:

(3.3) Cωk
(gln) ≃ H∗

GLn
(Gr(k, n),C) ≃ C[p1, . . . , pk, q1, . . . , qn−k, a1, . . . , an]/coeffs(p(t)q(t)− a(t)).

Remark 3.1. This is one instance of the observation due to Panyushev that certain classical family algebras
are isomorphic to equivariant cohomology rings of algebraic varieties. In particular, in the case of minuscule
representations the corresponding variety is a generaized flag variety. We refer the reader to [11, Section 6] for
more information.

On the other hand, we also have the following isomorphism of algebras

(3.4) C[p1, . . . , pk, q1, . . . , qn−k, a1, . . . , an]/coeffs(p(t)q(t)− a(t)) ≃ C[t1, . . . , tk, tk+1, . . . , tn]
Sk×Sn−k ,

where the group Sk × Sn−k acts naturally on t1, . . . , tk, tk+1, . . . , tn i.e. by permuting separately the first k
variables and the last n− k variables. The last isomorphism acts on the generators pi, qj , ar as follows:

(3.5) pi 7→ (−1)iei(t1. . . . , tk), qj 7→ (−1)jej(tk+1, . . . , tn), ar 7→ (−1)rer(t1, . . . , tk, tk+1, . . . , tn).

Here el is the l-th elementary symmetric polynomial (see [3] for more information about the symmetric func-
tions).

We discuss the isomorphism between Cωk
(gln) and C[t1, . . . , tk, tk+1, . . . , tn]

Sk×Sn−k in more detail in Sub-
section 3.4. We obtain this isomorphism independently using only algebraic methods.
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3.3. Diagonalization homomorphism. Consider the following evaluation map from C[xij , i, j = 1, n] to
C[t1, . . . , tn]: for any polynomial F in xij define

Ψ(F ) = F |xij=δijti .

Recall that we regard the elements Cωk
(gln) as d(ωk)× d(ωk)-matrices with entries in C[xij , i, j = 1, n]. By

extending the map Ψ entry-wise onto Mat(d(ωk),C[xij , i, j = 1, n]) we can define the homomorphism Diag on
Cωk

(gln) as follows:
Diag : Cωk

(gln) → Mat(d(ωk),C[t1, . . . , tn]),
where

Diag(A) = Ψ(A).

In other words, we evaluate the matrix-valued polynomial function A in variables xij at xii = ti, xij = 0 for
i ̸= j.

Remark 3.2. One can regard t1, . . . , tn as coordinates on the Cartan subalgebra h ⊂ gln, i.e. the abelian
subalgebra consisting of the diagonal matrices. Then, one can view Diag(A) as a restriction of A to h.

3.4. The maps ψI . For any I ∈ Ik denote by ψI the map

ψI : Cωk
(gln) → C[t1, . . . , tn], ψI(A) = [Diag(A)]II .

Proposition 3.2. (a) For any I ∈ Ik, σ ∈ Sn and any A ∈ Cωk
(gln) we have

(3.6) ψσ(I)(A) = σ(ψI(A)).

(b) The image of Diag consists of diagonal matrices and for any I ∈ Ik the map ψI is an algebra isomorphism
between Cωk

(gln) and C[t1, . . . , tn]Stabn(I).

Remark 3.3. The symmetric group Sn naturally acts on {1, 2, . . . , n}. This gives rise to a natural Sn-action
on the family Ik of all k-element subsets of {1, 2 . . . , n}. Note that for any I ∈ Ik the stabilizer of I under the
action of Sn is isomorphic to Sk ×Sn−k. We denote this subgroup of Sn as Stabn(I).

Remark 3.4. The symmetric group Sn naturally acts on C[t1, . . . , tn] via
(σf)(t1, . . . , tn) = f(tσ(1), . . . , tσ(n))

and thus we can consider the Stabn(I)-invariant part of C[t1, . . . , tn].

Proof. Recall that elements of Cωk
(gln) can be characterized by the following condition

(3.7) πωk
(g)A(X)πωk

(g)−1 = A(Ad(g)(X)) for all g ∈ GLn, X ∈ gln.

It follows that for X ∈ h and diagonal invertible matrices g we have

(3.8) πωk
(g)A(X)πωk

(g)−1 = A(X),

and hence
πωk

(g)Diag(A)πωk
(g)−1 = Diag(A).

Therefore, for any Y ∈ h we have
[πωk

(Y ),Diag(A)] = 0.

Since all weights of the representation πωk
are distinct, the latter implies that Diag(A) is a diagonal d(ωk)×d(ωk)-

matrix.
To prove the second part of the proposition we take X ∈ h and g = ρ(σ) in (3.7), where σ ∈ Sn and

ρ : Sn → GLn is a standard representation of Sn. It follows that for any I ∈ Ik and any σ ∈ Sn we have

(3.9) [Diag(A)]σ(I)σ(I) = σ
(
[Diag(A)]II

)
, i.e. ψσ(I)(A) = σ(ψI(A)).

Thus, Diag(A) ∈ C[t1, . . . , tn]Stabn(I).
Since Diag(A) is a diagonal matrix and Ψ is homomorphism, the map ψI : A 7→ [Diag(A)]II is an algebra

homomorphism from Cωk
(gln) to C[t1, . . . , tn]Stabn(I).

Now let us prove that the ψI is injective for any I ∈ Ik. Indeed, assume that for some A ∈ Cωk
(g) we have

[Diag(A)]II = 0. It follows that Ψ(A) = 0. In other words, the polynomial function A : gln → Mat(d(ω)×d(ωk))
vanishes on h. The condition (3.8) implies that A also vanishes on the Zariski dense subset of semisimple elements
of gln. Thus, A = 0.

Finally, to prove the surjectivity of the map ψI we need the following lemma.

Lemma 3.3. (a) The map Diag acts on elements Ym and tr(Y m) as follows:

(3.10) ψI(Yβ) =
∑
i∈I

tβi , ψI(tr(Y
α)) =

∑
J∈Ik

(∑
i∈J

ti

)α

.

(b) The elements
∑

i∈I t
β
i , β = 0, k and

∑
J∈Ik

(∑
i∈J ti

)r
, α = 1, n− k generate the algebra C[t1, . . . , tn]Stabn(I).
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Proof. The part (a) of the lemma follows from direct computations and the part (b) is a consequence of some
general facts about symmetric functions. □

Remark 3.5. In order to obtain the isomorphism mentioned in Subsection 3.2 we just need to take I =
{1, 2, . . . , k}.

Since elements Ym and tr(Y m) belong to Cωk
(gln) and their images generate C[t1, . . . , tn]Stabn(I), the map

A 7→ [Diag(A)]II is surjective. □

In the course of the proof of Proposition 3.2 we also proved the following fact.

Proposition 3.4. Kirillov algebra Cωk
(gln) is generated by elements Ym, m ≥ 0 and traces of powers of Y .

Moreover,

(3.11) Cωk
(gln) =

〈
Y0, Y1, . . . , Yk, tr(Y ), . . . , tr(Y n−k)

〉
.

3.5. Derivation of the formula for D. In case of g = gln we define an invariant form as follows:

(3.12) B(X,Y ) = tr(XY ) =

n∑
i,j=1

xij(X)xji(Y ).

In particular, the dual basis of {Eij}ni,j=1 with the respect to B is {Eji}ni,j=1. Therefore, the action ofD-operator
can now be rewritten as follows:

(3.13) D(A) =

n∑
i,j=1

πωk
(Eji) ·

∂A

∂Eij
.

From now on we interpret matrix elements of A as polynomials in variables xij (which in turn are elements of

gl∗n). Then, it is clear that
∂A
∂Eij

corresponds to ∂A
∂xij

. For any J,K ∈ Ik the matrix element [D(A)]JK of D(A)

can be expressed as follows:

[D(A)]JK =

n∑
i,j=1

∑
I∈Ik

[πωk
(Eji)]JI ·

[
∂A

∂xij

]
IK

=

n∑
i,j=1

∑
I∈Ik

εij(I, J) ·
∂AIK

∂xij
.(3.14)

We use the isomorphism from Proposition 3.2.

Proposition 3.5. Let I ∈ Ik and let I ′ = {1, 2, . . . , n} \ I. Then, the operator

ψI ◦D ◦ ψ−1
I : C[t1, . . . , tn]Stabn(I) → C[t1, . . . , tn]Stabn(I)

acts as the following operator ∑
i∈I

∂

∂ti
+

∑
i∈I, j∈I′

∂ij .

Remark 3.6. Note this operator is not differential, i.e. does not satisfy the Leibniz rule.

To prove Proposition 3.5 we need two technical lemmas.

Lemma 3.6. For any indices i, j and any positive integer β we have

(3.15)
∂

∂xij

[
Xβ
]
=

β−1∑
γ=0

XγEijX
β−γ−1.

In particular, for any indices i′, j′ we have

(3.16) Ψ

(
∂

∂xij

[
Xβ
]
i′j′

)
=

{
δii′δjj′ ·

tβi −tβj
ti−tj

, i ̸= j,

δii′δjj′ · βtβ−1
i , i = j.

Proof. We have

(3.17)
∂

∂xij

[
Xβ
]
=

β−1∑
γ=0

Xγ ·
(

∂

∂xij
X

)
·Xβ−γ−1 =

β−1∑
γ=0

XγEijX
β−γ−1

and hence,

Ψ

(
∂

∂xij
[Xβ ]i′j′

)
=

β−1∑
γ=0

[
Ψ(X)γ Ψ(Eij)Ψ(X)β−γ−1

]
i′j′

= δii′δjj′ ·
β−1∑
γ=0

tγi t
β−γ−1
j

which is equivalent to the formula above. □
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Lemma 3.7. For any indices i, j, any I, J ∈ Ik and any positive integers α, β we have

(3.18) Ψ

(
∂

∂xij
[Yβ ]IJ

)
=

{
εi,j(I, J) ·

tβi −tβj
ti−tj

, i ̸= j,

εi,j(I, J) · βtβ−1
i , i = j.

and

(3.19) Ψ

(
∂

∂xij
[Y α

β ]IJ

)
=

{
εi,j(I, J) · 1

ti−tj

(
(
∑

p∈I t
β
p )

α − (
∑

p∈J t
β
p )

α
)
, i ̸= j

εi,j(I, J) · βtβ−1
i (

∑
p∈I t

β
p )

α−1, i = j.

In other words,

(3.20) Ψ

(
∂

∂xij
[Y α

β ]IJ

)
=

{
εi,j(I, J) · ∂ij(ψI(Y

α
β )), i ̸= j

εi,j(I, J) · ∂
∂ti

(ψI(Y
α
β )), i = j,

Proof. Note that

Ψ

(
∂

∂xij
[Yβ ]IJ

)
=

n∑
i′,j′=1

εi′,j′(I, J) ·Ψ
(

∂

∂xij
[Xβ ]i′j′

)
Applying Lemma 3.6 we obtain the first equality. For the second one note that

Ψ

(
∂

∂xij
[Y α

β ]IJ

)
=

α−1∑
γ=0

[Ψ(Yβ)
γ ]II

[
Ψ

(
∂

∂xij
Yβ

)]
IJ

[Ψ(Yβ)
α−γ−1]JJ =

=
α−1∑
γ=0

∑
p∈I

tβp

γ [
Ψ

(
∂

∂xij
Yβ

)]
IJ

∑
p∈J

tβp

α−γ−1

.

If i ̸= j, then we can rewrite the last expression as

α−1∑
γ=0

∑
p∈I

tβp

γ [
Ψ

(
∂

∂xij
Yβ

)]
IJ

∑
p∈J

tβp

α−γ−1

= εi,j(I, J)
tβi − tβj
ti − tj

·
α−1∑
γ=0

∑
p∈I

tβp

γ∑
p∈J

tβp

α−γ−1

=

= εi,j(I, J)
tβi − tβj
ti − tj

·

(∑
p∈I t

β
p

)α
−
(∑

p∈I t
β
p

)α
∑

p∈J t
β
p −

∑
p∈J t

β
p

.

Now note that if εi,j(I, J) ̸= 0, then we have i ∈ I, j ∈ J and I \ {i} = J \ {j} (see Lemma 2.2). Therefore, if
i ̸= j, then

Ψ

(
∂

∂xij
[Y α

β ]IJ

)
= εi,j(I, J)

(∑
p∈I t

β
p

)α
−
(∑

p∈J t
β
p

)α
ti − tj

= εi,j(I, J) ∂ij

∑
p∈I

tβp

α .

If i = j, then εi,j(I, J) ̸= 0 only if I = J and i ∈ I and in this case

α−1∑
γ=0

∑
p∈I

tβp

γ [
Ψ

(
∂

∂xij
Yβ

)]
IJ

∑
p∈J

tβp

α−γ−1

= εi,j(I, J) · βtβ−1
i · α

∑
p∈I

tβp

α−1

=

= εi,j(I, J)
∂

∂ti

∑
p∈I

tβp

α .

To conclude the proof it remains to note that ψI(Y
α
β ) =

(∑
p∈I t

β
p

)α
(see Lemma 3.3). □

Lemma 3.8. Let i and j be distinct elements of {1, . . . , n}. Then, for any polynomials {fr}mr=1 in C[t1, . . . , tn]
the following identity holds

(3.21) ∂ij

(
m∏
r=1

fr

)
=

m∑
r=1

sij

(∏
q<r

fq

)
∂ij(fr)

(∏
q>r

fq

)
.

Proof. For m = 2 it follows from

∂ij(fg) =
fg − sij(fg)

ti − tj
=

(f − sij(f))g + sij(f)(g − sij(g))

ti − tj
= ∂ij(f)g + sij(f)∂ij(g).

Induction on m now gives the general case. □

Remark 3.7. This identity may be considered as an analogue of Leibniz rule for divided differences.
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Proof. In order to recover the action of D it suffices to understand how it acts on the basis elements. Suppose
that

(3.22) A =

l∏
r=1

tr(Y αr ) ·
m∏
s=1

Yβs
.

Then

[D(A)]JK =

n∑
i,j=1

∑
I∈Ik

εij(I, J) ·
∂AIK

∂xij
=

n∑
i,j=1

∑
I∈Ik

εij(I, J) ·
∂

∂xij

(
l∏

r=1

tr(Y αr ) ·

[
m∏
s=1

Yβs

]
IK

)
=(3.23)

=

n∑
i,j=1

∑
I∈Ik

εij(I, J)

(
l∏

r=1

tr(Y αr ) · ∂

∂xij

[
m∏
s=1

Yβs

]
IK

+
∂

∂xij

(
l∏

r=1

tr(Y αr )

)
·

[
m∏
s=1

Yβs

]
IK

)
.(3.24)

Thus,

Ψ([D(A)]JK) =

n∑
i,j=1

∑
I∈Ik

εij(I, J)

l∏
r=1

Ψ(tr(Y αr )) ·Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
+

+

n∑
i,j=1

∑
I∈Ik

εij(I, J)Ψ

(
∂

∂xij

(
l∏

r=1

tr(Y αr )

))
·

[
Ψ

(
m∏
s=1

Yβs

)]
IK

=

=

l∏
r=1

Ψ(tr(Y αr )) ·
n∑

i,j=1

∑
I∈Ik

εij(I, J)Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
+

+

[
Ψ

(
m∏
s=1

Yβs

)]
KK

·
n∑

i,j=1

εij(K,J)Ψ

(
∂

∂xij

(
l∏

r=1

tr(Y αr )

))
,

or

Ψ([D(A)]JK) =

l∏
r=1

Ψ(tr(Y αr )) · Sβ(J,K) +

(
m∏
s=1

ψK(Yβs
)

)
· Sα(J,K),

where

Sα(J,K) =

n∑
i,j=1

εij(K,J)Ψ

(
∂

∂xij

(
l∏

r=1

tr(Y αr )

))
,(3.25)

Sβ(J,K) =

n∑
i,j=1

∑
I∈Ik

εij(I, J)Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
.(3.26)

Here we used the fact that Ψ maps Cωk
(gln) to diagonal matrices.

We now simplify these two expressions Sα(J,K) and Sβ(J,K) separately. Note that

Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
=

 m∑
s=1

 ∏
1≤r<s

Ψ(Yβr
)

Ψ

(
∂

∂xij
Yβs

) ∏
s<r≤m

Ψ(Yβr
)


IK

.

However, all matrices Ψ(Yβ) are diagonal and hence,

Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
=

m∑
s=1

 ∏
1≤r<s

[Ψ(Yβr
)]II

[Ψ( ∂

∂xij
Yβs

)]
IK

 ∏
s<r≤m

[Ψ(Yβr
)]KK

 =

=

m∑
s=1

(∏
r<s

ψI(Yβr
)

)
·Ψ
(

∂

∂xij
[Yβs

]IK

)
·

(∏
r>s

ψK(Yβr
)

)
.

Therefore,

Sβ(J,K) =

n∑
i,j=1

∑
I∈Ik

εij(I, J)Ψ

(
∂

∂xij

[
m∏
s=1

Yβs

]
IK

)
=

=

n∑
i,j=1

∑
I∈Ik

εij(I, J)

m∑
s=1

(∏
r<s

ψI(Yβr
)

)
·Ψ
(

∂

∂xij
[Yβs

]IK

)
·

(∏
r>s

ψK(Yβr
)

)

Lemma 3.7 implies that Ψ
(

∂
∂xij

[Yβs
]IK

)
is zero unless εi,j(I,K) = 0. Note that if J ̸= K, then εi,j(I, J)εi,j(I,K) =

0 for all i, j ∈ {1, . . . , n} and I ∈ Ik. Thus, Sβ(J,K) = 0 if J ̸= K.
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Now assume that J = K. Then, we can split the first summation in Sβ(J,K) and apply Lemma 3.7 as
follows:

Sβ(J, J) =

n∑
i=1

∑
I∈Ik

εii(I, J)
2

m∑
s=1

(∏
r<s

ψI(Yβr )

)
∂

∂ti
(ψI(Yβs))

(∏
r>s

ψJ(Yβr )

)
+

+
∑
i ̸=j

∑
I∈Ik

εij(I, J)
2

m∑
s=1

(∏
r<s

ψI(Yβr
)

)
∂ij(ψI(Yβs

))

(∏
r>s

ψJ(Yβr
)

)
.

Since εij(I, J) = 0 unless i ∈ I, j ∈ J and I \ {i} = J \ {j}, we have (here we denote J ′ = {1, . . . , n} \ J)

Sβ(J, J) =

(∑
i∈J

∂

∂ti

)(
m∏
s=1

ψJ(Yβs)

)
+
∑
i∈J′

j∈J

m∑
s=1

(∏
r<s

ψsij(J)(Yβr )

)
∂ij(ψsij(J)(Yβs))

(∏
r>s

ψJ(Yβr )

)
=

=

(∑
i∈J

∂

∂ti

)(
m∏
s=1

ψJ(Yβs
)

)
+
∑
i∈J′

j∈J

m∑
s=1

sij

(∏
r<s

ψJ(Yβr
)

)
∂ij(ψsij(J)(Yβs

))

(∏
r>s

ψJ(Yβr
)

)
=

=

(∑
i∈J

∂

∂ti

)(
m∏
s=1

ψJ(Yβs
)

)
+
∑
i∈J′

j∈J

∂ji

(
m∏
s=1

ψJ(Yβs
)

)
.

It remains to simplify the sum Sα(J,K). Firstly, Lemma 3.7 implies that

Ψ

(
∂

∂xij
tr(Y αr )

)
=
∑
L∈Ik

Ψ

(
∂

∂xij
[Y αr ]LL

)
.

Hence, Ψ
(

∂
∂xij

tr(Y αr )
)
= 0 unless εi,j(L,L) ̸= 0, i.e. i = j and i ∈ L. Therefore,

Sα(J,K) =

n∑
i,j=1

εij(K,J)Ψ

(
∂

∂xij

(
l∏

r=1

tr(Y αr )

))
=

=

n∑
i,j=1

εij(K,J)

 l∑
r=1

∏
q ̸=r

Ψ(tr(Y αq ))

 ·Ψ
(

∂

∂xij
tr(Y αr )

) =

=

n∑
i=1

εii(K,J)

 l∑
r=1

∏
q ̸=r

Ψ(tr(Y αq ))


∑

L∈Ik
L∋i

∂

∂ti
(ψL(Y

αr ))


 .

Now note that for any L ∈ Ik such that i ̸∈ L we have ψL(Y
α) =

(∑
l∈L tl

)α
and hence ∂

∂ti
(ψL(Y

α)) = 0.

Besides that, if J ̸= K, then εii(K,J) = 0 for all i and Sα(J,K) = 0. If J = K, then εii(J, J) equals 1 if i ∈ J
and 0 otherwise. Thus, in the case J = K we can rewrite the expression above as follows:

Sα(J, J) =
∑
i∈J

l∑
r=1

∏
q ̸=r

Ψ(tr(Y αq ))

(∑
L∈Ik

∂

∂ti
(ψL(Y

αr ))

)
=

=

(∑
i∈J

∂

∂ti

)(
l∏

r=1

Ψ(tr(Y αr ))

)
.

The formulas for Sα(J,K) and Sβ(J,K) show that [D(A)]J,K is zero if J ̸= K. If J = K, then we have

Ψ([D(A)]JJ) =

l∏
r=1

Ψ(tr(Y αr )) · Sβ(J, J) +

(
m∏
s=1

ψJ(Yβs
)

)
· Sα(J, J) =(3.27)

=

l∏
r=1

Ψ(tr(Y αr )) ·


(∑

i∈J

∂

∂ti

)(
m∏
s=1

ψJ(Yβs)

)
+
∑
i∈J′

j∈J

∂ji

(
m∏
s=1

ψJ(Yβs)

)+(3.28)

+

(
m∏
s=1

ψJ(Yβs)

)
·

(∑
i∈J

∂

∂ti

)(
l∏

r=1

Ψ(tr(Y αr ))

)
.(3.29)
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Since
∏l

r=1 Ψ(tr(Y αr )) is a symmetric polynomial in variables t1, . . . , tn, we have

∂ji

(
l∏

r=1

Ψ(tr(Y αr ))

)
= 0

for all i, j. Finally, recall that A =
∏l

r=1 tr(Y
αr ) ·

∏m
s=1 Yβs

. It follows that the formula for [D(A)]JJ above can
be rewritten as

ψJ(D(A)) = Ψ([D(A)]JJ) =

(∑
i∈J

∂

∂ti

)
(ψJ(A)) +

∑
i∈J′

j∈J

∂ij(ψJ(A)).

Therefore, the linear operator ψJ◦D◦ψ−1
J acts as

∑
i∈J

∂
∂ti

+
∑

i∈J′, j∈J ∂ji on basis elements of C[t1, . . . , tn]Stabn(J)

and this concludes the proof. □

Remark 3.8. In the course of the proof we showed again that D maps Cωk
(gln) to itself.

3.6. Relations in subalgebras generated by D. Recall that the GLn-equivariant cohomology ring of
Gr(k, n) has the following presentation in terms of generators and relations:

(3.30) H∗
GLn

(Gr(k, n),C) = C[p1, . . . , pk, q1, . . . , qn−k, a1, . . . , an]/coeffs(p(t)q(t)− a(t)).

Using the isomorphism from Subsection 3.2 we can identify H∗
GLn

(Gr(k, n),C) with Kirillov algebra Cωk
(gln).

It is known that under this identification the elements {ai}ni=1 are generators of the ring C[gln]gln .

Remark 3.9. In fact, am as an invariant polynomial on gln is just the m-th elementary symmetric polynomial
in eigenvalues of the corresponding element in gln. This can also be seen from (3.5) and properties of the
diagonalization map.

In particular, we can define the action of D-operator on H∗
GL(Gr(k, n),C). It is known that for any classical

family algebra the image D(C[g]g) lies in the center of Cµ(g) (see [4, Theorem M]). In particular, it means that
C[g]g and D(C[g]g) generate a commutative subalgebra inside Cµ(g). We now can apply the results obtained
for Cωk

(gln) to describe the corresponding commutative subalgebra in that case.
Using the isomorphism (3.4), formulas (3.5) and formula for the action of D one can obtain the following

explicit formula:

(3.31) D(ar) =
∑

i+j=r

(k − i)piqj .

Using ideas from the elimination theory we can obtain explicit relations between D(ai). Indeed, recall that

(3.32) ar =
∑

i+j=r

piqj .

The relations (3.32) and (3.31) can be simplified if we add auxiliary variable t and extend the action of D on
polynomials in t with coefficients in H∗

GL(Gr(k, n),C):
D(a(t)) = p′(t)q(t), a(t) = p(t)q(t),

where

a(t) = tn + a1t
n−1 + . . .+ an,

p(t) = tk + p1t
k−1 + . . .+ pk,

q(t) = tn−k + q1t
n−k−1 + . . .+ qn−k.

For convenience we also define a0 = 1, p0 = 1 and q0 = 1.
It follows that a′(t) − D(a(t)) = p(t)q′(t) and a(t) = p(t)q(t) have a common divisor p(t) of the degree k.

Then, the properties of the Sylvester matrix give the relations between elements ar and D(am).

Proposition 3.9. Denote bm = D(am+1) for all m = 0, n− 1. Then, all (2n − k) × (2n − k) minors of the
following (2n− 1)× (2n− 1) matrix

(3.33)



a0 a1 . . . . . . an−1 an 0 . . . . . . 0
0 a0 . . . . . . . . . an−1 an 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . a0 a1 a2 . . . . . . . . . an

na0 − b0 (n− 1)a1 − b1 . . . . . . an−1 − bn−1 0 . . . . . . . . . 0
0 na0 − b0 . . . . . . . . . an−1 − bn−1 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . na0 − b0 (n− 1)a1 − b1 . . . . . . . . . an−1 − bn−1


are zero.
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4. Quantum case

4.1. Characteristic identities. Here we describe a general algorithm due to Gould [6] which produces a
Cayley-Hamilton type identity for any M -element MA in Qµ(g), where A ∈ Z(U(gln)). We refer the reader to
the original paper [6] for more details.

Let µ1, . . . , µl be all distinct weights appearing in the irreducible representation Vµ. Then, one can consider
the following polynomial functions on h:

(4.1) fi(λ) =
1

2
(χλ+µi(A)− χλ(A)− χµ(A)), λ ∈ h∗.

Here χλ is the infinitesimal character of U(g) that corresponds to a weight λ.

It is known that the twisted Weyl group W̃ acts on {µ1, . . . , µl} and hence permutes functions {f1, . . . , fl}.
Therefore, the coefficients ci(λ) of the polynomial

(4.2) tl + c1(λ)t
l−1 + . . .+ cl(λ) = (t− f1(λ)) . . . (t− fl(λ))

are W̃ -invariant functions on h∗.

Recall that Harish-Chandra isomorphism Γ: Z(U(g)) → S(h)W̃ acts as (Γ(A))(λ) = χλ(A) for C ∈ Z(U(g)).
Gould proved the following fact.

Proposition 4.1. For any A ∈ Z(U)(g) the polynomial

(4.3) tl + Γ−1(c1(λ))t
l−1 + . . .+ Γ−1(cl(λ))

annihilates the M -element MA ∈ Qµ(g).

Remark 4.1. The main difficulty in finding the explicit formulas of this polynomial is the computation of
elements Γ−1(ci(λ)). That is because there is no convenient formula for the inverse of Harish-Chandra map

Γ−1 : S(h)W̃ → Z(U(g)).

4.2. M-operator for the quadratic Casimir. We prove here the analogue of Cayley-Hamilton identity. One
can view these identities as generalizations of the well-known Capelli’s identity. Namely, in case g = gln and
µ = ω1 the row determinant

rdet


E11 − t E21 . . . . . . En1

E12 E22 − t− 1 . . . . . . En2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
E1n E2n . . . . . . Enn − t− (n− 1)


annihilates M and this is closely related to the Capelli’s identity.

It turns out that the characteristic identity of the M -operator of quadratic Casimir element in Qωk
(gln) can

be written in a way very similar to Cayley-Hamilton theorem. Define the diagonal matrix Qk ∈ Mat(d(ωk), d(ωk)
as follows:

Qk = diag([Qk]II , I ∈ Ik), where [Qk]II =
∑
i∈I

i− k(k + 1)

2
.

Now define the “correction” of M -element MC as

M̂C =MC −Qk.

Proposition 4.2. The row determinant of the matrix M̂C − t · Id annihilates MC , i.e.

(4.4) rdet(M̂C − t · Id)|t=MC
= 0.

Remark 4.2. In the classical case Cayley-Hamilton implies that det(MC − t · Id)|t=MC
= 0, so we do not

have any corrections (i.e. Qk). Thus, one can regard the identity above as a quantization of Cayley-Hamilton
identity for MC in the classical case.

Example 4.1. In the case g = gl4 and µ = ω2 we have the following matrix:

M̂C =


E11 + E22 E32 E42 −E31 −E41 0

E23 E11 + E33 − 1 E43 E21 0 −E41

E24 E34 E11 + E44 − 2 0 E21 E31

−E13 E12 0 E22 + E33 − 2 E43 E32

−E14 0 E12 E34 E22 + E44 − 3 E32

0 −E14 E13 −E24 E23 E33 + E44 − 4


and the theorem states that the row determinant rdet(M̂C − t · Id) annihilates the element MC . The correction
Q2 in this case is just the diagonal matrix diag(0, 1, 2, 2, 3, 4).

Proof. The proof relies on the following lemmas.
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Lemma 4.3. The coefficients of the polynomial rdet(M̂C−t ·Id) belong to the center of the universal enveloping
algebra U(gln).

Lemma 4.4. The image of the polynomial rdet(M̂C − t · Id) ∈ U(gln)[t] under the map Γ equals∏
I∈Ik

(∑
i∈I

Eii − t− [Qk]II

)
∈ U(h).

Remark 4.3. Note that elements Eii belong to U(h) and commute with each other. Hence, the product above
is well-defined.

Proof. Denote for brevity m =
(
n
k

)
and suppose that I1, . . . , Im is the sequence of all elements of Ik in the

increasing order (we use the ordering defined in Subsection 2.5). Let AIJ be the (I, J)-entry of the matrix M̂C .
The definition of MC implies that

MC =

n∑
i,j=1

πωk
(Eij)⊗ Eji,

where πωk
(Eij)eJ =

∑
I∈Ik

εj,i(J, I)eI . Therefore,

AIJ =

n∑
i,j=1

εj,i(J, I)Eji − δIJ(t+ [Qk]II).

It follows that if I ⪯ J and I ̸= J , then AIJ ∈ n− and if I = J , then AII =
∑

i∈I Eii − t− [Qk]II ∈ U(h).
We have

rdet(M̂C − t · Id) =
∑

σ∈Sm

sgn(σ)AI1Iσ(1)
. . . AImIσ(m)

.

Now we claim that for any σ ∈ Sm \ {id} the product AI1Iσ(1)
. . . AImIσ(m)

belongs to n−U(gln). Indeed, fix

σ ∈ Sm \ {id} and let r ∈ {1, 2, . . . ,m} be the minimal index such that σ(r) ̸= r. Then, clearly, σ(r) > r and
Iσ(r) ⪰ Ir. Thus, AIrIσ(r)

∈ n− and

AI1Iσ(1)
. . . AImIσ(m)

= AI1I1 . . . AIr−1Ir−1 ·AIrIσ(r)
· . . . ·AImIσ(m)

∈ n−U(gln).

This means that Γ maps each product AI1Iσ(1)
. . . AImIσ(m)

with σ ̸= id to zero. On the other hand, Γ maps

U(h) to itself, so

Γ
(
rdet(M̂C − t · Id)

)
=
∏
I∈Ik

(∑
i∈I

Eii − t− [Qk]II

)
,

as claimed. □

To finish the proof we need to check in the case of quadratic Casimir the functions f1, . . . , fm ∈ S(h) coincide
with {

∑
i∈I Eii− [Qk]II}I∈Ik

⊂ U(h) if we identify S(h) and U(h). This is the content of the following lemmas.

Lemma 4.5. Let C =
∑m

i=1X
iXi be the quadratic Casimir. Then,

χλ(C) = (λ, λ+ 2ρ),

where ρ is the half-sum of all positive roots of the reductive Lie algebra g. Here (·, ·) is the pairing on h∗ induced
by invariant bilinear form B on h.

Proof. See [6, Section 2]. □

Lemma 4.6. Let {ρi}ni=1 be the basis in h∗ dual to basis {Eii}ni=1 in h. Then,

(a) The set of all distinct weights of the irreducible representation Vωk
is {µI}I∈Ik

, where µI =
∑

i∈I ρi.
(b) In the case when A = C is the quadratic Casimir element, the functions defined in Subsection 4.1 have

the following explicit form:

(4.5) fI(λ) =
∑
i∈I

(λ, ρi)−
∑
i∈I

i+
k(k + 1)

2
.

Proof. The part (a) follows from the fact that {eI}I∈Ik
is a basis of Vωk

and it is not difficult to check that eI
is the vector of the weight µI .

For the part (b) we apply the formula (4.1):

fI(λ) =
1

2

(
(λ+ µI , λ+ µI + 2ρ)− (λ, λ+ 2ρ)− (ωk, ωk + 2ρ)

)
.



CLASSICAL AND QUANTUM FAMILY ALGEBRAS OF THE FUNDAMENTAL REPRESENTATIONS OF gln 15

Since µI =
∑

i∈I ρi, ωk =
∑k

i=1 ρi, ρ = 1
2

∑n
i=1(n+ 1− 2i)ρi and (ρi, ρj) = B(Eii, Ejj) = δij , we have

fI(λ) =
1

2

(
(2λ+ 2ρ+ µI , µI)− (ωk, ωk + 2ρ)

)
= (λ, µI) + (µI , ρ)− ωk, ρ) =

=
∑
i∈I

(λ, ρi) +
1

2

∑
i∈I

(n+ 1− 2i)− 1

2

k∑
j=1

(n+ 1− 2j) =

=
∑
i∈I

(λ, ρi)−
∑
i∈I

i+
k(k + 1)

2
,

as was claimed. □

Finally, under the identification of S(h) with U(h) the expression for fI in the lemma above corresponds to∑
i∈I Eii − [Qk]II and this concludes the proof. □

5. Conclusion

There are several questions related to Kirillov algebras which remain open. Firstly, it seems that the D-
operator plays an important role in studying classical family algebras. In particular, using this operator one
can construct commutative subalgebras inside Cµ(g). Since classical family algebras of certain classes, e.g.
corresponding to weight multiplicity free representations, are isomorphic to equivariant cohomology rings of
algebraic varieties, it might be interesting to understand the D-operator in terms of geometry.

Question 5.1. What is the geometrical meaning of the D-operator (at least in the weight multiplicity free
case)?

On the algebraic side, we do not know any convenient way for the calculation of the action of D-operator in
general case. Our results in case Cωk

(gln) were obtained by direct computations.

Question 5.2. Is there a natural coordinate-free description of the D-operator on arbitrary classical Kirillov
algebra Cµ(g)?

The study of quantum family algebras is much harder than in the classical case. In particular, even for
Qωk

(gln) we do not have explicit presentation of this algebra in terms of generators and relations (but we do
know that Qωk

(gln) is commutative). Using some non-trvial results from the theory of universal enveloping
algebras we were able to find some identities for M -elements. However, it is unclear how one can get relations
between differentM -elements. The diference between classical and quantum cases here is that in the latter case
we do not have an analogue of the “diagonalization map”.

Question 5.3. How to describe the quantum family algebra Qωk
(gln) in terms of generators and relations?

Finally, one might expect that quantum family algebras correspond to some “quantized” versions of equi-
variant cohomology rings of certain algebraic varieties. However, here we do not even know what might be the
suitable cohomology theory.

Question 5.4. Is there any geometrical description of quatum family algebras, e.g Qωk
(gln)?
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