

Indecomposable characters on direct limit of groups $\mathfrak{S}_N \ltimes \mathbb{T}^N$ with diagonal embeddings

Nhok Tkhai Shon Ngo
(joint work with Mykola Nessonov)

Ergodic group actions and unitary representations III
IM PAN, Warsaw, February 5, 2026

Characters on a group

Let G be a topological group. Recall the notion of a character on G :

Definition

A continuous function χ on a group G is called a (*normalized*) *character* if

- χ is positive-definite, i.e. the matrix $[\chi(g_j^{-1}g_k)]_{j,k=1}^m$ is positive semi-definite for any $g_1, g_2, \dots, g_m \in G$,
- χ is central, i.e. the equality $\chi(gh) = \chi(hg)$ holds for all $g, h \in G$,
- $\chi(e) = 1$, where e is the identity element of G .

Definition

A character χ is called *indecomposable* if it is an extreme point of the simplex of all characters. In other words, χ is indecomposable if there are no distinct characters χ_1 , χ_2 and $\alpha \in (0, 1)$ such that $\chi = \alpha\chi_1 + (1 - \alpha)\chi_2$.

Example

Multiplicative characters, i.e. group homomorphisms $\alpha: G \rightarrow \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ are characters in the sense above. More generally, the normalized trace given by $g \mapsto \frac{1}{\dim V} \text{Tr}_V \pi(g)$ is also a character for any finite-dimensional representation V of G .

Block-diagonal embeddings and the inductive limit

Let positive integers N and M be such that N divides M . Define the *block-diagonal embedding* $i = i_{N,M} : U(N) \hookrightarrow U(M)$ as follows: for $U \in U(N)$ we put

$$i_{N,M}(U) = U \otimes I_{M/N} \quad \text{or} \quad [U]_{N \times N} \xrightarrow{i_{N,M}} \begin{bmatrix} U & & & \\ & U & & \\ & & \ddots & \\ & & & U \end{bmatrix}_{M \times M}$$

Fix a sequence $\widehat{\mathbf{n}}$ of positive integers $\{n_j\}_{j=1}^{\infty}$ with $n_j > 1$, and set $N_k = n_1 n_2 \dots n_k$. For a suitable sequence of subgroups $\{H_k < U(N_k)\}_k$ we can define the inductive limit

$$H_1 \xrightarrow{i_{N_1, N_2}} H_2 \xrightarrow{i_{N_2, N_3}} \dots \xrightarrow{i_{N_{k-1}, N_k}} H_k \xrightarrow{i_{N_k, N_{k+1}}} \dots \longrightarrow \varinjlim H_k$$

Examples of resulting “infinite-dimensional groups” are given in the table below.

$H_k < U(N_k)$	$\varinjlim H_k$
$U(N_k)$	$U(\widehat{\mathbf{n}})$
\mathbb{T}^{N_k}	$\mathbb{T}^{\widehat{\mathbf{n}}}$

$H_k < U(N_k)$	$\varinjlim H_k$
\mathfrak{S}_{N_k}	$\mathfrak{S}_{\widehat{\mathbf{n}}}$
$G_{N_k} := \mathfrak{S}_{N_k} \ltimes \mathbb{T}^{N_k}$	$G_{\widehat{\mathbf{n}}}$

Goal: to classify all indecomposable characters on $G_{\widehat{\mathbf{n}}}$ (and then on $U(\widehat{\mathbf{n}})$ as well).

Action on $L^2[0, 1)$

The group $\mathfrak{S}_{\widehat{n}}$ can be naturally identified with a subgroup of certain measure-preserving transformations of the space $X = [0, 1)$ equipped with the Lebesgue measure ν .

Namely, we let an element σ of $\mathfrak{S}_{N_i} \subset \mathfrak{S}_{\widehat{n}}$ to act on X as follows:

$$R(\sigma)(x) = \left(x - \frac{k-1}{N_i} \right) + \frac{\sigma(k)-1}{N_i}, \text{ if } x \in \left[\frac{k-1}{N_i}, \frac{k}{N_i} \right), \quad k = 1 \dots, N_i.$$

In other words, $\sigma \in \mathfrak{S}_{N_i}$ permutes N_i half-closed intervals $\left[\frac{k-1}{N_i}, \frac{k}{N_i} \right)$.

An element of the group $\mathbb{T}^{\widehat{n}}$ can be regarded as measurable functions from $X = [0, 1)$ to \mathbb{T} . Namely, we identify $t = (t_1, \dots, t_{N_i}) \in \mathbb{T}^{N_i}$ with the following piecewise-constant function:

$$t(x) = t_k \text{ for } x \in \left[\frac{k-1}{N_i}, \frac{k}{N_i} \right), \quad k = 1 \dots, N_i.$$

Using these identifications we can embed $G_{\widehat{n}}$ into the group of unitary operators of the Hilbert space $L^2(X, \nu)$. This gives a character $\chi(g) = \langle g \cdot \mathbb{1}_X, \mathbb{1}_X \rangle = \int_{\text{Fix}(\sigma; X)} t(x) d\nu(x)$.

Basic characters

To state the main result, let us introduce certain special characters on $\mathfrak{S}_{\widehat{n}}$ and $G_{\widehat{n}}$.

Characters on $\mathfrak{S}_{\widehat{n}}$: for any $\sigma \in \mathfrak{S}_{N_i} \subset \mathfrak{S}_{\widehat{n}}$ define

$$\phi_{\text{sym}}(\sigma; p) = \begin{cases} 1, & p = \text{triv}, \\ \text{sgn}_{\infty}(\sigma), & p = \text{sgn}, \\ \chi_{\text{reg}}(\sigma), & p = \text{reg}, \\ \chi_{\text{nat}}(\sigma), & p = \text{nat}, \end{cases} \quad \text{where}$$

$$\chi_{\text{nat}}(\sigma) = \frac{\#\{m \in \{1, 2, \dots, N_i\} : \sigma(m) = m\}}{N_i} \quad \text{and} \quad \text{sgn}_{\infty}(\sigma) = \lim_{k \rightarrow \infty} \text{sgn}(\text{i}_{N_i, N_k}(\sigma)).$$

Characters on $G_{\widehat{n}}$: for any r -tuple $\mathbf{m} = (M_1, \dots, M_r) \in \mathbb{Z}^r$ and $g = (\mathbf{t}, \sigma) \in G_{\widehat{n}}$ set

$$\phi(g; M) = \int_{\text{Fix}(\sigma; X)} \mathbf{t}(x)^M d\nu(x) \quad \text{and} \quad \phi_{\mathbf{m}}(g) = \prod_{j=1}^r \phi(g; M_j).$$

In particular, the restriction of $\phi(\text{--}; 0)$ to $\mathfrak{S}_{\widehat{n}}$ coincides with χ_{nat} .

Classification of indecomposable characters on $G_{\widehat{n}}$

For $p \in \{\text{triv, sgn, reg}\}$ and $\mathbf{m} = (M_1, \dots, M_r) \in \mathbb{Z}^r$ we also denote

$$\phi_{p,\mathbf{m}}(g) = \phi_{\text{sym}}(\sigma; p)\phi_{\mathbf{m}}(g) = \begin{cases} \phi(g; M_1) \dots \phi(g; M_r), & p = \text{triv}, \\ \text{sgn}_{\infty}(\sigma)\phi(g; M_1) \dots \phi(g; M_r), & p = \text{sgn}, \\ \chi_{\text{reg}}(\sigma)\phi(g; M_1) \dots \phi(g; M_r), & p = \text{reg}. \end{cases}$$

Theorem 1 (Nessonov–N.)

Indecomposable characters on $G_{\widehat{n}}$ are given by

$$\{\phi_{p,\mathbf{m}} : p \in \{\text{triv, sgn, reg}\}, \mathbf{m} \in \mathbb{Z}^r, r \in \mathbb{Z}_{\geq 0}\}.$$

Remark

One can check that $\phi_{p_1, \mathbf{m}_1} = \phi_{p_2, \mathbf{m}_2}$ iff $\phi_{\text{sym}}(-; p_1) = \phi_{\text{sym}}(-; p_2)$ and \mathbf{m}_1 coincides with \mathbf{m}_2 up to a permutation and deletion of zeroes if $p_1 = p_2 = \text{reg}$.

One can compare this result with the corresponding classification for $\mathfrak{S}_{\widehat{n}}$.

Proposition (Nessonov–N., 2025)

Indecomposable characters of $\mathfrak{S}_{\widehat{n}}$ are given by $\{\chi_{\text{reg}}, \chi_{\text{nat}}^r, \text{sgn}_{\infty} \cdot \chi_{\text{nat}}^r : r \in \mathbb{Z}_{\geq 0}\}$.

Outline of the proof of Theorem 1

Proof of the main theorem consists of three parts.

- We use the **approximation theorem**: each indecomposable character of $\widehat{G_n}$ is a weak limit of some sequence of irreducible characters of groups G_{N_k} . This may be viewed as an instance of the *ergodic method* introduced by Vershik and Kerov.
- **Main technical part:** we describe all weakly convergent sequences of irreducible characters of groups G_{N_k} and compute their limits.
- We show that the resulting limiting functions are indeed extreme characters of $\widehat{G_n}$.

Remark

- In the second part we also use the calculations from the proof of the classification of characters on $\widehat{G_n}$.
- The third part is done essentially algebraically. We also give explicit constructions of unitary representations of $\widehat{G_n}$ which realize $\phi_{p,m}$ as matrix elements of the form $\langle \pi(g)\xi, \xi \rangle$.

General approximation theorem

Let $\{G(k)\}_{k=1}^{\infty}$ be a sequence of Hausdorff, second countable compact groups such that

$$G(1) \subset G(2) \subset \dots \subset G(k) \subset \dots$$

Let $G(\infty) = \bigcup_{k=1}^{\infty} G(k)$ be the inductive limit of the sequence $\{G(k)\}_{k=1}^{\infty}$. Denote by $\widehat{G}(k)$ the countable set of equivalence classes of all (finite-dimensional) irreducible unitary representations of the group $G(k)$.

Proposition

Let χ be an indecomposable character of the group $G(\infty)$. Then, there exists an increasing sequence $\{k_i\}_{i=1}^{\infty}$ of positive integers and a sequence $\{\pi_{k_i} \in \widehat{G}(k_i)\}_{i=1}^{\infty}$ of irreducible representations of groups $G(k_i)$ such that the sequence $\{\chi_{\pi_{k_i}}\}_{i=1}^{\infty}$ of the corresponding characters converges to χ uniformly on each $G(m)$.

A sketch of proof (1/2)

- Apply the GNS construction for χ : it yields representation (Π, \mathcal{H}) with a cyclic unit vector ξ . The corresponding II_1 -factor $M = \Pi(G(\infty))'' \subset B(\mathcal{H})$ has a tracial state defined as $\text{tr}(m) = \langle m\xi, \xi \rangle_{\mathcal{H}}$. In particular, we have $\text{tr}(\Pi(g)) = \chi(g)$ for $g \in G(\infty)$.
- Introduce the “conditional expectations”: for $m \in M$ define

$$E_k(m) := \int_{G(k)} \Pi(g)m\Pi(g)^{-1}dg \in \Pi(G(k))'$$

and note that the limit $E_{\infty}(m) = \lim_{k \rightarrow \infty} E_k(m)$ exists for any m . Since M is a factor and $E_{\infty}(m) \in M \cap M'$, we get $E_{\infty}(m) = \text{tr}(m) \cdot I$.

- Use a standard fact from the harmonic analysis on compact group $G(k)$: for any $h \in G(k)$ one has

$$\int_{G(k)} \Pi(g)\Pi(h)\Pi(g)^{-1}dg = \sum_{\pi \in \widehat{G}(n)} \chi_{\pi}(h) \cdot P_{\pi},$$

where for $\pi \in \widehat{G}(k)$ the orthogonal projection P_{π} onto the π -isotypic component of Π is given by the formula

$$P_{\pi} = (\dim \pi)^2 \int_{G(n)} \chi_{\pi}(g^{-1})\Pi(g)dg.$$

A sketch of proof (2/2)

- Using the equality $\lim_{n \rightarrow \infty} \|E_n(m)\xi - E_\infty(m)\xi\|^2 = 0$ for $m = \int_{G(k)} f(h)\Pi(h)dh \in M$ with $f \in L^1(G(k))$, we obtain

$$\lim_{n \rightarrow \infty} \sum_{\pi \in \widehat{G}(n)} \left| \int_{G(k)} f(h)(\chi_\pi(h) - \chi(h))dh \right|^2 \cdot \|P_\pi \xi\|_{\mathcal{H}}^2 = 0,$$

while $\sum_{\pi \in \widehat{G}(n)} \|P_\pi \xi\|_{\mathcal{H}}^2 = \|\xi\|_{\mathcal{H}}^2 = 1$ for each $n \geq k$.

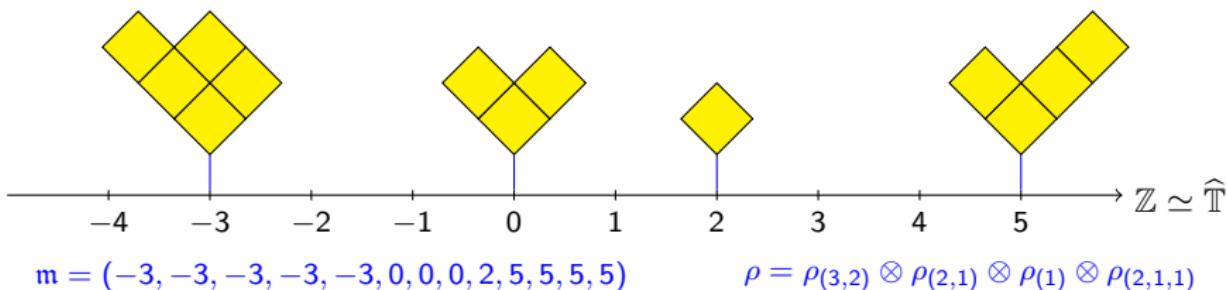
- Applying the fact above for countable dense subsets in each $L^1(G(k))$, we obtain a sequence $\pi_{k_i} \in \widehat{G}(k_i)$ such that $\chi_{\pi_{k_i}} \rightarrow \chi$ in weak-* topology on each $L^\infty(G(k))$. Finally, for positive-definite functions the weak-* topology is equivalent to the topology of uniform convergence on all compact subsets.

Irreducible representations of G_N

Each irreducible representation of the group G_N is isomorphic to

$$\pi_{\mathfrak{m}, \rho} = \text{Ind}_{\text{Stab}(\mathfrak{m}) \ltimes \mathbb{T}^N}^{G_N} \mathfrak{m} \otimes \rho,$$

where $\mathfrak{m} \in \mathbb{Z}^N$ is a multiplicative character of \mathbb{T}^N and ρ is an irreducible representation of the stabilizer subgroup $\text{Stab}(\mathfrak{m}) \subset \mathfrak{S}_N$. Elements of $\widehat{G_N}$ can be parameterized by a function $\lambda: \widehat{\mathbb{T}} \rightarrow \mathbb{Y}$ with values in Young diagrams such that $|\lambda| = \sum_{k \in \mathbb{Z}} |\lambda(k)| = N$.



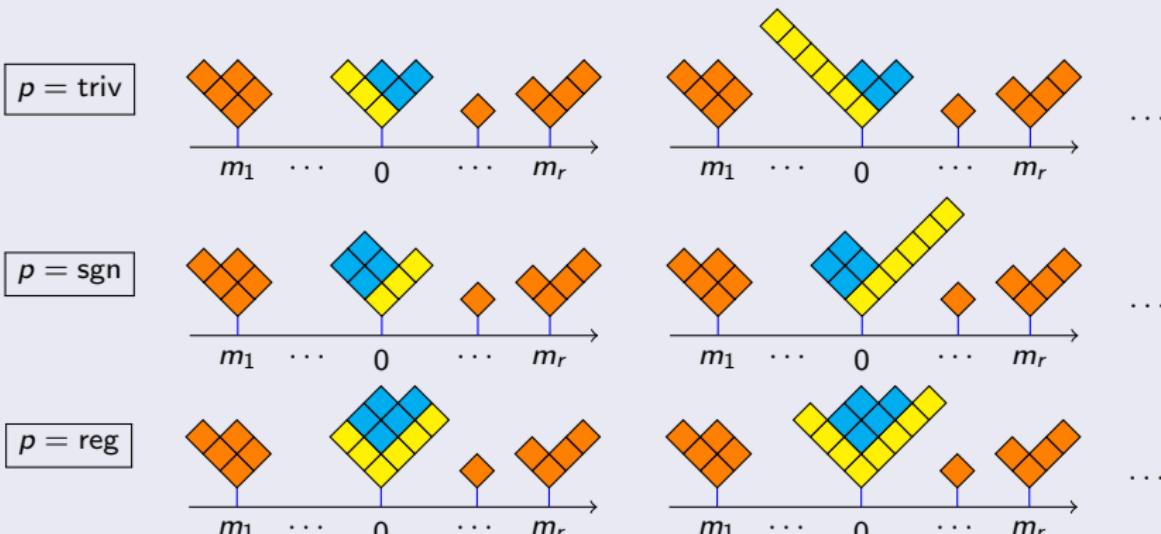
A function $\lambda: \mathbb{Z} \rightarrow \mathbb{Y}$ parameterizing an irreducible representation of $G_{13} = \mathfrak{S}_{13} \ltimes \mathbb{T}^{13}$.

We then use the Frobenius formula to express the character χ_λ of $\pi_{\mathfrak{m}, \rho}$ in terms of characters of the symmetric groups.

Weakly converging sequences of characters of G_N

Lemma

Consider a sequence $\{\lambda(k): \mathbb{Z} \rightarrow \mathbb{Y}\}_{k=1}^{\infty}$ with $|\lambda(k)| = N_k$. Assume that the sequence of irreducible characters $\chi_{\lambda(k)}$ converges pointwise on $G_{\widehat{n}}$. Then, up to passing to a subsequence, the sequence $\{\lambda(k)\}_{k=1}^{\infty}$ is in one of the following “regimes”:



The limiting function is $\phi_{p, \mathbf{m}}$, where \mathbf{m} consists of $|\lambda(k)(m_i)|$ copies of m_i for $k \gg 1$ and of $\#\{\text{blue boxes}\}$ copies of 0 for $p = \text{triv, sgn}$ (no zeroes for $p = \text{reg}$).

Sublemma

For $t = (t_1, \dots, t_N) \in \mathbb{T}^N$ and $\mathfrak{m} = (m_1, \dots, m_N)$ define

$$\psi(t; \mathfrak{m}) = \frac{1}{N!} \sum_{\sigma \in \mathfrak{S}_N} t_1^{m_{\sigma(1)}} \dots t_N^{m_{\sigma(N)}}.$$

Assume that for a sequence $\{\mathfrak{m}_k \in \mathbb{Z}^{N_k}\}_k$ the functions $\psi(-; \mathfrak{m}_k)$ converge on $\widehat{\mathbb{T}^N}$ to a continuous function. Then, there exist a finite collection M_1, \dots, M_r of integers such that each \mathfrak{m}_k , $k \gg 1$, coincides with $(M_1, \dots, M_r, 0, \dots, 0)$ up to a permutation.

Example

If $N_k = 2^k$, then the condition of the lemma in particular means that the sequence

$$\frac{t_1^{m_1(1)} t_2^{m_1(2)} + t_1^{m_1(2)} t_2^{m_1(1)}}{2}, \quad \frac{t_1^{m_2(1)+m_2(2)} t_2^{m_2(3)+m_2(4)} + t_1^{m_2(1)+m_2(3)} t_2^{m_2(1)+m_2(4)} + \dots}{6}, \dots$$

converges for all choices of $t_1, t_2 \in \mathbb{T}$.

“Explanations”: (1) use the continuity at the identity and take elements of the form $(t, \dots, t, 1, \dots, 1)$; (2) if one manages to collect many terms of shape $t^m(t^k + t^{-k})$ or $t^m(t + t^{-1})^k$ with large $|k|$, we get a non-trivial bound on $\psi(-; \mathfrak{m}_k)$ and t around 1.

An application: characters of the infinite unitary group

Theorem 1 also allows us to recover the classification of characters for the group $U(\widehat{n})$.

Theorem 2 (Boyer 1993; Enomoto–Izumi, 2016)

The indecomposable characters of the group $U(\widehat{n}) = \varinjlim U(N_k)$ are given by

$$\{\chi_{p,q} = \tau^p \bar{\tau}^q, \quad p, q \in \mathbb{Z}_{\geq 0}\},$$

where τ is the character of $U(\widehat{n})$ given by the normalized trace, i.e. $\tau(u) = \frac{1}{N_k} \text{tr}(u)$ for $u \in U(N_k)$.

Indeed, one can restrict any given character $\chi: U(\widehat{n}) \rightarrow \mathbb{C}$ to the subgroup $G_{\widehat{n}}$ to obtain that there exists a convex combination

$$\chi(u) = \sum_{\mathbf{m}} \alpha_{\mathbf{m}} \cdot \tau(u^{M_1}) \dots \tau(u^{M_r}) \text{ for } u \in U(\widehat{n}), \text{ where } \alpha_{\mathbf{m}} \geq 0, \sum_{\mathbf{m}} \alpha_{\mathbf{m}} = 1.$$

To conclude the proof it remains to prove two facts:

- $\alpha_{\mathbf{m}}$ is 1 for some $\mathbf{m} = \mathbf{m}_0$ and is 0 for all others;
- for $\mathbf{m}_0 = (M_1, \dots, M_r)$ all M_i 's are ± 1 .

Finishing the proof of Theorem 2

- To show that the convex combination above is trivial, we use the **multiplicativity property** of χ . In the homogeneous case, i.e. when $N_k = m^k$ for all k , this means that for any $u, v \in U(\widehat{\mathbf{n}})$ we have the equality

$$\chi(u \otimes v) = \chi(u)\chi(v).$$

To show that let (π, \mathcal{H}, ξ) be the GNS representation for χ , then for any $u \in U(m)$ there exists weak-* limit

$$\underset{k \rightarrow \infty}{w\text{-lim}} \pi(\underbrace{I_m \otimes \dots \otimes I_m}_k \otimes u) = \chi(u) \cdot I.$$

The last equality holds because u and $I_m^{\otimes k} \otimes u$ are conjugate elements while $\pi(U(\widehat{\mathbf{n}}))''$ is a factor. Therefore,

$$\begin{aligned} \chi(u \otimes v) &= \lim_{k \rightarrow \infty} \chi(u \otimes I_m^{\otimes k} \otimes v) = \lim_{k \rightarrow \infty} \langle \pi(u \otimes I_m^{\otimes k} \otimes v)\xi, \xi \rangle = \\ &= \chi(v) \lim_{k \rightarrow \infty} \langle \pi(u)\xi, \xi \rangle = \chi(u)\chi(v). \end{aligned}$$

The multiplicativity properties of $\chi(u)$ and $\tau(u^M)$, imply that $\alpha_{\mathbf{m}} = 0$ for all but one \mathbf{m} .

- To show that $\mathbf{m}_0 \in \{\pm 1\}^r$, we use the **representation theory** of $U(N)$ and the theory of **symmetric functions**. Our claim then boils down to the following fact: the product of power sums $p_{\lambda}(t_1, \dots, t_N)p_{\mu}(t_1^{-1}, \dots, t_N^{-1})$ is a non-negative combination of “generalized Schur functions” iff $\lambda = (1^p)$ and $\mu = (1^q)$.

Thank you!